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Abstract
Acyl phosphate monoesters are biomimetic acylation reagents that require coordination to metal
ions to react with cis-diol substrates in water. With lanthanide catalysts, outcomes are compromised
by (1) the competitive lanthanide-promoted hydrolysis of the acyl phosphate reagents as well as
by (2) the high affinity of lanthanum ions for the phosphate monoester by-product. Based on
analysis of the mechanism of the process, optimizing reaction conditions can selectively inhibit the
lanthanum-promoted hydrolysis of acyl phosphate monoesters. Furthermore, using zinc salts and
lead salts in place of lanthanides enhances the reactivity of the reactants and causes less complexation
of the metal ion with the by-products.

Key words: biomimetic acylation, Lewis acid catalysis, acyl phosphate esters, zinc and lead ion
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Introduction
The utility of acyl phosphates esters as biomimetic reagents for selective monoacylation of diols is a
subject of continuing interest with important applications, including kinome interrogation
(Patricelli et al. 2007; Nordin et al. 2015) and aminoacylation of the 3′-terminus of tRNA
(Tzvetkova and Kluger 2007; Duffy and Dougherty 2010). We previously reported that lanthanide
ions can serve as the chelated core to bind and activate the reacting species toward acyl transfer
(Cameron et al. 2004; Tzvetkova and Kluger 2007; Her and Kluger 2011). Bidentate coordination of
a cis-1,2-diol to a Lewis acid facilitates ionization of one of the coordinated diols while enhancing
the activity of the bidentate-coordinate acyl phosphate (Scheme 1). The bis-bidentate array of
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coordinated Lewis base (diol) and Lewis acid (acyl phosphate) promotes the ultimate combination
that produces the acylated diol along with a phosphate monoester as a by-product. The arrangement
can utilize the potential energy made available by the separation of the Lewis acid–base pair. Utilizing
acyl phosphate monoesters as metal-coordinated acyl donors at the same Lewis acid where the ionized
diol is coordinated promotes the reaction without involvement of the solvent. With a similar
approach, regioselective monoacylation of carbohydrates in water can be based on the geometry of
adjacent hydroxyl groups (Gray and Kluger 2007; Dhiman and Kluger 2010). However, although
the system is set up for efficient acylation, the formation of the correct combination of ligands in
the chelate for reaction is subject to competing homologous formation of the chelates as well as inter-
ference due to coordination to the lanthanide of the phosphate monoester product (see below).

An important potential use of the approach is for biomimetic aminoacylation of tRNA for the riboso-
mal introduction of unnatural amino acids into new proteins, which requires an aminoacylated
reagent whose reactive functionality parallels that of the biological agents, aminoacyl adenylates
(Schimmel 1987). However, complications arise from the competing effectiveness of the lanthanum
ion in the hydrolysis of phosphate derivatives that are the acylation reagents (Hendry and Sargeson
1989; Kluger et al. 1997). Furthermore, transfer of the acyl group, whether to the hydroxyl or to water,
releases ethyl phosphate, forming an insoluble complex with the metal ions that prevents further
catalysis (Tzvetkova 2008).

In the present study, we assessed the effects of other metal ions for reactions in water that are reported
to be effective in nonaqueous systems (Hikawa et al. 2014). We also assessed aqueous reaction condi-
tions with added solvents and at lower reaction temperatures. In some cases, these provided signifi-
cant improvements for the overall process.

Experimental

Preparation of N-deprotected phenylalanyl ethyl phosphate
BOC-PheEtP was formed in the DCC-mediated coupling of BOC-Phe and ethyl phosphate. PheEtP
was produced by removal of the BOC protecting group using a minimal amount of trifluoroacetic
acid. The N-deprotected product was precipitated from ice-cold dry acetone as a white powder
(Kluger et al. 1996). ESI-MS [M −H+] calculated m/z= 272.0693 and found m/z= 272.0711.

Analysis of the extent of PheEtP hydrolysis
A mixture of PheEtP (50 mmol/L) and lanthanum triflate (50 mmol/L) was incubated in an aqueous
MES buffer (200 mmol/L, pH 6). We assessed the effects of conducting the reaction in a range of
DMSO/buffer mixtures, as follows: 0/1, 2/3, 3/2, 9/1, 19/1, and 39/1 (v/v). The effect of temperature
on product yield was studied by conducting reactions at 20 and 4 °C. Samples were analyzed after
periodic additions of 20% volume of saturated EDTA solution until no further changes were observed.
Hydrolysis of PheEtP was then tracked by the integrated peak area from UV-HPLC at 260 nm.

Scheme 1. Lanthanum-promoted monoacylation of the diol in a nucleotide via a chelate formation.
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Monoaminoacylation of ethylene glycol
A mixture of ethylene glycol (60 mmol/L), PheEtP (50 mmol/L), and metal salt (La(OTf)3=
Zn(NO3)2=Pb(NO3)2= 50 mmol/L) was stirred in an MES buffer (200 mmol/L, pH 6) at 4 °C for
24–72 h. Samples were analyzed after periodic additions of 20% volume of saturated EDTA solution
until no further changes were observed. Products were isolated by reversed phase HPLC and lyophi-
lized. A colorless solid was collected. The yield was estimated from the integration of the peak areas
from UV-HPLC at 260 nm. ESI-MS [M + H+] calculated m/z= 210.11 and found m/z= 210.1.

Monobenzoylation of ethylene glycol
A mixture of ethylene glycol (60 mmol/L), BMP (50 mmol/L), and metal salt (La(OTf)3 =
Zn(NO3)2=Pb(NO3)2= 50 mmol/L) was stirred in an EPPS buffer (200 mmol/L pH 8) at 25 °C for
24–72 h (Cameron et al. 2004). Samples were analyzed after periodic additions of 20% volume of satu-
rated EDTA solution until no further changes were observed. Products were isolated by reversed
phase HPLC and lyophilized. A colorless solid was collected. The yield was estimated from the inte-
gration of the peak areas from UV-HPLC at 230 nm.

Preparation of 5′-phospho-2′-deoxyribocytidylylriboadenosine
dCA was produced following published methods (Noren et al. 1989). ESI-MS [M + H+] calculated
m/z= 637.1167 and found m/z= 637.1173.

Aminoacylation of nucleotides
AMP (50 mmol/L) and dCA (1 mmol/L) were reacted with PheEtP (50 mmol/L) and metal salts
(50 mmol/L) as described for the reaction with ethylene glycol. ESI-MS [M + H+] for AMP-Phe: cal-
culated m/z= 493.1242 and found m/z= 493.1197; for dCA-Phe: calculated m/z= 784.2000 and
found m/z= 784.2000.

Results and discussion
An aminoacyl phosphate monoester, PheEtP, was used as the acylation agent for the evaluation of cat-
alysts in this study. This reagent is a good model for the general approach to the formation of amino
acids esters at the 3′-terminal of tRNA. We found that conducting reactions in mixtures of DMSO
and water reduced the rate of hydrolysis of PheEtP in the presence of lanthanum ion compared with
the reaction in water alone. In a 95/5 DMSO/aqueous buffer (v/v), the t½ of PheEtP was about 30 min,
whereas the t½ in water was <2 min. Nonetheless, the yield of acylated products did not increase with
the reduced hydrolysis rate of the reagent. Surprisingly, the yield of ester derivatives that were formed
at the 2′- or 3′-ribosyl positions of AMP with PheEtP remained near 30% after 24 h, regardless of the
amount of DMSO in the aqueous reaction mixture. This suggests that the reactants are locally sol-
vated exclusively by water. The polarity of the reaction partners and their ability to form hydrogen
bonds is consistent with this outcome. It is likely that the ionization of water coordinated to lantha-
num ions is essential for the activation of PheEtP, whereas the reactivity of the hydroxyl group of diol
toward the carboxyl carbon is increased as it is deprotonated by the lanthanum-coordinated hydroxyl
(Kluger and Cameron 2002). Lowering the relative amount of water reduces the extent of ionization of
the hydroxyl of the diol moiety, reducing the reactivity in the coordinated ligands.

The problematic competing hydrolysis of PheEtP occurs by the addition of non-chelated water. This
will have a higher enthalpic barrier if it avoids the coordination sphere of the metal ion. Lowering the
reaction temperature should reduce the rate of the reaction with water to a greater extent than it will
reduce the desired acylation from reaction with the bis-bidentate coordinated chelate. As expected, at
4 °C, hydrolysis occurred at a significantly slower rate than at room temperature. At the lower
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temperature, 15% of the initial PheEtP remained after 2.5 h, corresponding to a t½ of 1 h under these
conditions. Applying the same conditions to the lanthanum ion-promoted aminoacylation of AMP
increased the yield from around 30% to 40%. For aminoacylation of dCA, a dinucleotide used by
Robertson et al. (1989) in the chemical aminoacylation of tRNA, the combined yields of 2′ and 3′
esters doubled from 6.8% to 15% after 12 h of reaction. With PheEtP at its saturating concentration,
the reaction produced the desired esters at a 40% yield after 12 h at 4 °C (Table 1). This establishes
the importance of using lower reaction temperatures, consistent with the expected effect of selectively
slowing the competing hydrolysis.

With this useful outcome, we optimized conditions for acylation with metal salts and determined the
extent of the competing hydrolysis of PheEtP. The t½ for catalyzed hydrolysis of PheEtP at 4 °C in the
presence of zinc or lead salts were 60 and 5 min, respectively. The reaction in the presence of cupric
salts is not effective, as it selectively promotes the hydrolysis of PheEtP. Based on these observations,
we anticipated that Zn2+ and Pb2+ should catalyze aminoacylation of diols at or near 0 °C. We tested
this approach by following the aminoacylation of ethylene glycol by PheEtP at 4 °C (Table 2).

Table 1. Yields for aminoacylation of AMP and dCA by PheEtP in the presence of Lewis acids.

Salt Nucleotide Temperature (°C) Combined yield

La(OTf)3 AMP 25 29%

4 36%

dCA 25 6.8%

4 15% (40%)

Zn(NO3)2 AMP 4 31%

dCA 4 19%

Pb(NO3)2 AMP 4 31%

dCA 4 13%

Note: AMP, adenosine monophosphate; dCA, 5′-phospho-2′-deoxyribocytidylylriboadenosine;
PheEtP, phenylalanyl ethyl phosphate.

Table 2. Summary of metal-mediated monoacylation reaction of ethylene glycol with PheEtP and BMP.

Acyl phosphate Salt [Salt] (mmol/L) Yield

PheEtP La(OTf)3 50 64%

Zn(NO3)2 50 23%

150 24%

ZnSO4 50 22%

Pb(NO3)2 50 67%

150 63%

BMP La(OTf)3 50 3.5%

Zn(NO3)2 50 3.6%

Pb(NO3)2 50 7.5%

Note: PheEtP, phenylalanyl ethyl phosphate; BMP, benzoyl methyl phosphate.
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In the presence of Zn2+ or Pb2+, the reactions of ethylene glycol and PheEtP produced a mixture of
the ester and the hydrolysis product, phenylalanine, within 1 min after addition to the solution. The
Pb2+-catalyzed reactions occurred with a half-life for PheEtP of <1 min. The yields are comparable
with those from reactions conducted in the presence of La3+. The Zn2+-catalyzed reactions were
slower and their overall yields were lower than with Pb2+ and La3+.

We also investigated the reactions of ethylene glycol with BMP (Scheme 2). The t½ for hydrolysis of
BMP in the presence of Zn2+ and Pb2+ were 24 and 1 h, respectively. The Pb2+-catalyzed monoben-
zoylation reactions of ethylene glycol gave the best yield of the monoester after 3 h, whereas reactions
with Zn2+ required about 12 h to reach their maximum yield.

We also evaluated the effectiveness of Zn2+ and Pb2+ as catalysts for reactions of PheEtP with a
mononucleotide and a dinucleotide. Both AMP and dCA were separately incubated with PheEtP in
the presence of the metal ions at 4 °C, followed by analysis that used reverse-phase HPLC to separate
the reactants and products. The reactions gave 2′ and 3′ nucleotidyl esters in each case. In reactions
with dCA, the yield was 19% with Zn2+ and 13% with Pb2+ (Figures 1 and 2). These did not improve
on the previously reported 15% yield with La3+. We also monitored the reactions for an additional
72 h during which the distribution of products remained unchanged, establishing that the esters are
stable under these conditions and that the reactions are self-limiting.

Scheme 2. Lanthanum/lead/zinc-mediated monobenzoylation of ethylene glycol.

Fig. 1. Amionacylation reaction with
adenosine monophosphate (AMP) and
phenylalanyl ethyl phosphate (PheEtP)
catalyzed by La3+, Pb2+, and Zn2+.
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Reports of previous studies indicate that Pb2+ is among the most effective catalysts for site-specific
cleavage of RNA (Huff et al. 1964; Brown et al. 1983). Lead hydroxide is an active catalyst for RNA
hydrolysis (Brown et al. 1983) and for transesterification of a phosphate diester (Morrow et al.
1992). In reactions at pH around 7, where Pb2+-promoted aminoacylation occurs, lead hydroxides
are present (Perera et al. 2001). Lead hydroxides could assist in deprotonation of the incoming
hydroxyl, further promoting acylation.

As noted earlier, a major problem with La3+-promoted acylation is the high affinity of La3+ to
phosphate monoesters. The resulting precipitate removes the La3+ catalyst from solution. As a result,
La3+-promoted acylation reactions require a large excess of the added metal ion (Gray and Kluger
2007). Reactions with Zn2+ and Pb2+ reduce the formation of insoluble metal phosphates, providing
alternative catalysts for acylation reactions via acyl phosphates that can operate at lower concentrations.

Conclusions
We have demonstrated that lowering the reaction temperature improves lanthanide-ion-promoted
aminoacylation reactions by selectively slowing the competing hydrolysis of activated amino acyl
phosphates. Catalysis by Zn2+ and Pb2+ is effective, producing the desired aminoacylation products
under conditions where the acyl phosphate reagent has improved stability.

List of abbreviations

AMP adenosine 5′-monophosphate
BMP benzoyl methyl phosphate
BOC tertbutyl oxycarbonyl
dCA 5′-phospho-2′-deoxyribocytidylylriboadenosine
DCC N, N′-dicyclohexylcarbodiimide
DMSO dimethyl sulfoxide
EDTA ethylenediamine tetraacetic acid

Fig. 2. Aminoacylation reaction with
5′-phospho-2′-deoxyribocytidylylriboade-
nosine (dCA) and phenylalanyl ethyl
phosphate (PheEtP) catalyzed by La3+,
Pb2+, and Zn2+.
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EPPS N-(2-hydroxyethyl)piperazine-N′-(3-propane) sulfonic acid
ESI-MS electrospray ionisation mass spectrometry
MES 2-(N-morpholino)ethanesulfonic acid
PheEtP phenylalanyl ethyl phosphate
tRNA transfer RNA
UV-HPLC UV/Vis spectroscopic detection of output of high performance liquid chromatograph
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