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Abstract
In 1956, Shell Oil Company geologist M. King Hubbert published a model for the growth and decline
over time of the production rates of oil extracted from the land mass of the continental US. Employing
an estimate for the amount of ultimately recoverable oil and a logistic curve for the oil production
rate, he accurately predicted a peak in US oil production for 1970. His arguments and the success of
his prediction have been much celebrated, and the original paper has 1400 publication citations to
date. The theory of “peak oil” (and subsequently, of natural resource scarcity in general) has conse-
quently become associated with Hubbert and “Hubbert” curves and models. However, his prediction
for the timing of a world peak oil production rate and the subsequent predictions of many others have
proven inaccurate. We revisit the Hubbert model for oil extraction and provide an analysis of it and
several variants in the language of (time) autonomous differential equations.

Key words: Hubbert model, peak oil, reserve growth, ultimate resource, ultimate recovery
appreciation, differential equations

Introduction
In his seminal paper, prepared for a meeting of the American Petroleum Institute in Texas in 1956,
Shell Oil geologist Marion King Hubbert attempted to answer the question, “how far along have we
come on our way to complete exploration [of world oil fields]?” (Hubbert 1956, p. 2). The paper pre-
sented a resource model constructed to answer this question. Hubbert writes that,

as an essential part of our analysis, we can assume with complete assurance that the industrial
exploitation of the fossil fuels will consist in the progressive exhaustion of an initially fixed
supply to which there will be no significant additions. (Hubbert 1956, p. 4).

Consequently, the two fundamental questions that drive the analysis, both for Hubbert and again here
in this critique, are as follows:

1. What is the recoverable amount of the “initially fixed supply”?

2. Can we predict the timing of the “progressive exhaustion” of this ultimate resource amount?

As per Morehouse (1997), we will use the term “ultimate resource” (UR) for the amount in question 1,
and note that several synonyms are often used: “estimated ultimate recovery” (EUR), “ultimate recov-
erable resources”, and “ultimate recovery” (Morehouse 1997; Maggio and Cacciola 2012).

In 2005, to mark its 125th anniversary, Science published a special issue introduction titled “What
Don’t We Know?” (Kennedy and Norman 2005). Among this list of the most profoundly vexing
inquiries currently confounding the human race is an updated variant of the Hubbert questions:
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“What can replace cheap oil—and when?” (Kerr and Service 2005, p. 101). In this form of the question
there appears to be an implicit assumption that progressive exhaustion of world oil reserves results in
“expensive” (or even, “no more”) oil. Thus, this question leads back to the twin questions of ultimate
reserve amount and prediction of future production levels, now nuanced by additional questions
concerning: the cost and difficulty of extraction, the availability of cost-competitive energy
alternatives, and society’s willingness and ability to curb its appetite for cheap oil. These latter
questions, though increasingly relevant, are not addressed. Rather, we attempt to explore, update,
and critique the answers to the two fundamental questions provided by the original Hubbert model
from 60 years ago.

Reserve to production ratio
A first estimate of the UR of oil is to use the petroleum engineering profession’s estimate of “world
oil reserve”, R(t), which is the amount of technically and economically recoverable oil from all
known world oil fields at a particular time, t ≥ 0, measured in years. Such estimates are fraught with
uncertainty, depend heavily on reliable geologic and engineering data (not always available), require
expert and experienced interpretation of those data, and are hopefully untainted by geo-political
interference. “Proven” reserves, based on the definition approved by the Society of Petroleum
Engineers, are those claimed to have a reasonable certainty (statistically, at least 90% confidence)
of being recoverable. Such proven reserves are known in the industry as “1P” (Society of
Petroleum Engineers 2005).

In this paper we will use the consistent time series oil data as published annually by British Petroleum
(BP) (BP 2017a, 2017b). These BP data, both for “reserve” and for “production”, purport to be inclu-
sive regarding the type of oil referenced. According to BP,

Oil reserves include field condensate and natural gas liquids as well as crude oil. This inclu-
sive approach helps to develop consistency with the oil production numbers published in
the Review, which also include these categories of oil. Liquid hydrocarbon fuels from non-
hydrocarbon sources, such as ethanol from corn or sugar or synthetic oil derived from natu-
ral gas (so-called GTL or gas-to-liquids), are not included in either the reserves or production
series. (BP 2017c)

We will use BP data for the world oil production rate at time t, here denoted P(t) gigabarrels
(Gbbl)/year. From the same source, R(t) consists of 37 data points, beginning in 1980 (t= 0) to the
most recent values (t = 36) from 2016. Data for P(t) go back to 1965, yielding 52 data points. The
cumulative amount of oil extracted, Q(t) Gbbl, since the discovery of oil in Pennsylvania in 1859, is
then constructed by adding the yearly production amounts to an estimate from Gallagher (2011) for
Q(0), herein labelled Qo=Q(0), setting t= 0 to a convenient year.

When we use R(t) as a first estimate of UR, the simplest estimate of the “time to depletion” (i.e., an
answer to the second posed question) is to compute the ratio, R(t)/P(t) years, which measures the
number of years remaining given the current reserve level and present rate of extraction (production)
until the reserve is completely exhausted. Measurements of this R/P ratio have been employed for dec-
ades, popping up in diverse places. For instance, in the environmental science text (Harte 1988), the
computation based on 1980 data1, reportedly extracted from Hubbert (1969), is as follows:

1 × 1022

1.35 × 1020
½J=ðJ=yearÞ� = 74 ½years�

1A factor 6.1 × 1018 J/Gbbl converts the crude oil energy amounts in joules (J) to gigabarrels of oil (Gbbl).
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The Institution of Mechanical Engineers in the UK posted a 2014 article to their website, which has
since been removed, titled “When will oil run out?”. Employing the R/P ratio, they stated:

There are an estimated 1.3 trillion barrels of proven oil reserve left in the world’s major fields,
which at present rates of consumption will be sufficient to last 40 years. By 2040, production
levels may be down to 15 million barrels per day—around 20% of what we currently con-
sume. (Institution of Mechanical Engineers 2014)

Other journalists use the same information in a less alarmist fashion. For instance Maclean’s from
February 2014:

According to BP’s Statistical Review of World Energy, global oil reserves at the end of 2012
were 1.7 trillion barrels. Given that the world consumes about 86 million barrels of crude
oil per day, it would be easy to conclude we’ll run out of oil in 55 years, or sooner if we
increase consumption. (Leach 2014)

The author then goes on to explain why, despite generally increasing consumption rates, the oil
reserves amount has increased over the past 30 years rather than declined, concluding with a defini-
tive prediction, “So, what’s the bottom line? Are we going to run out of oil? No”. (Leach 2014)

So what do the data show? Figures 1a and 1b show the most recent world oil reserve and production
data from BP, with their regression lines in each case. Both reserve and production exhibit strongly
increasing trends. The regression line for reserve has a very strong correlation coefficient of 0.9895,
and reserves have been increasing at a rate of almost 30 Gbbl/year since 1980 (slope of 29.17). The
correlation coefficient for production is also strong at 0.9564, and world oil production has approxi-
mately tripled since 1964.

(a) Reserve (b) Production

Fig. 1. British Petroleum (BP) world data and regression lines.
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Figure 2 shows the time history of the R/P ratio for the world with the regression line for the com-
puted data.

Clearly the data show an upward trend in the R/P ratio as well; the regression line has a slope of
0.5004. Thus, the number of years of oil remaining has been increasing by half a year per year since
1980. Further, the growth in the R/P ratio has occurred despite steadily increasing production.2 The
correlation coefficient of 0.8932, corresponding to a coefficient of determination of r2 = 0.7979 for
the R/P ratio data, indicates that the growth trend is strong. As a consequence we conclude that the
R/P ratio does not provide a reasonable predictor for the end of the age of oil.

Hubbert model: The logistic curve
M. King Hubbert was interested in the answers to the two fundamental questions in the context of oil,
coal, and natural gas, and their application to various regions, such as individual oil fields, Texas, the
US, and finally, the world. In this paper, we focus on world oil. To address his questions, Hubbert pro-
posed a more sophisticated approach than the simplistic R/P ratio. He realized that production rate
curves, as functions of time, for oil fields, whole geographic regions, and other fossil fuels share the
feature in which the “curve starts slowly and then rises more steeply until finally an inflection point
is reached after which it becomes concave downward” (Hubbert 1956, p. 6). He deduced that “the
significance of this is that during the initial stages [of resource exploitation] all of these rates of pro-
duction tend to increase exponentially with time” (Hubbert 1956, p. 7). However, “no finite resource
can sustain for longer than a brief period such a rate of growth of production; therefore, although

Fig. 2. Reserve/production ratio. BP, British Petroleum.

2A >50% increase since 1980.

Jones and Willms

FACETS | 2018 | 3: 260–274 | DOI: 10.1139/facets-2017-0097 263
facetsjournal.com

FA
C

E
T

S 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y 
18

.2
24

.6
1.

12
 o

n 
05

/1
3/

24

http://dx.doi.org/10.1139/facets-2017-0097
http://www.facetsjournal.com


production rates tend initially to increase exponentially, physical limits prevent their continuing to do
so” (Hubbert 1956, p. 8). He proposed two requirements for his models (Hubbert 1956, p. 9):

1. The production rate is zero at the outset and “after passing through one or several maxima, it
must decline again to zero”.

2. The area under the production rate curve (above the time axis), between the outset time and the
end time, t→∞, is the UR amount.

Consequently, to satisfy requirements 1 and 2, Hubbert settled on a resource production rate model
that is a family of curves bearing the characteristic shape of a bell (Hubbert 1956, fig. 11, p. 10).
These logistic curves depend on three parameters, Q∞, r, and b. They are described algebraically by
the formula

PðtÞ = rQ∞

2þ 2 coshðb − rtÞ (1)

From eq. (1) Q(t) can be recovered as:

QðtÞ =
Z

t

0
PðsÞdsþ Qo (2)

where Qo =Q(0) and Q∞ = limt→∞ QðtÞ. Equation (2) follows from eq. (1) because the production/
extraction rate, P(t), is the time derivative of the cumulative extracted amount, Q(t).

Picking the parameters to match physical data and (or) estimates is an exercise in curve fitting. The first
parameter, Q∞, represents the UR. Hubbert used his expertise as an oil geologist to carefully justify a
global estimate for Q∞, the “initial amount present” for the whole world, namely Q∞ =1250 Gbbl
(Hubbert 1956, p. 22). This value becomes the area under the world oil production curve, in agreement
with eq. (2). Next, the value b can be computed from the initial amount via b = ln(Q∞/Qo−1) (c.f.
eq. (4), evaluated at t= 0). Finally, r is calculated fromHubbert’s estimate of the peak (maximum) produc-
tion rate, “two and one-half times the present [1956] rate” (Hubbert 1956, p. 22). Thus, Pmax = 12.5
Gbbl/year, and r comes from the relation Pmax= rQ∞/4. The result of this model by Hubbert (1956,
fig. 20) “: : : places the [predicted] date of the peak at about the year 2000” (Hubbert 1956, p. 22).

In the mathematical modelling of physical phenomena, simple curve fitting has inherent weaknesses.
A wide variety of curve families with simple algebraic structure can be chosen to fit a given set of data
over time, but the usefulness of such models as predictors of the future is suspect, unless the choice is
based on more fundamental dynamics or first principles. In this case, the family of curves Hubbert
employed arises from the solution of a differential equation called the logistic equation. In this con-
text, the logistic equation relates the production rate P(t) and the cumulative amount Q(t) dynami-
cally in time, allowing for a more fundamental justification of the model. In the authors’ opinion, it
is this more fundamental justification that gives the Hubbert peak oil model its credibility and endur-
ing impact. We therefore attempt the following detailed presentation.

Noting that P is the time rate of change of Q (i.e., P(t) =Q′(t)), the logistic differential equation for
Q(t) is:

Q 0ðtÞ = rQðtÞð1 − QðtÞ=Q∞Þ (3)

This model is to be satisfied for all t > 0 and for the given (small, positive) initial value, Qo =
Q(0). The solution of the differential equation is the unknown Q(t), which satisfies the initial
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value at t = 0 for given (positive, constant) parameters, r and Q∞. As the differential equation
depends only on Q and the model parameters, and not explicitly on t, it is termed time-
autonomous. The model from eq. (3) requires that P =Q′ be jointly proportional to a “growth
term”, Q, and to a “limiting term”, (1 − Q(t)/Q∞). We examine each of these model features in
order.

Suppose the limiting term had little effect and could be ignored. This situation would occur for
the time period near the outset at t = 0, when Q ≈ 0, which gives the limiting term a value approx-
imately equal to one. In this initial period the model essentially behaves like the easier relation,
Q′(t)/Q(t) = r (take the limiting term to be 1 in eq. (3) and divide through by the remaining oper-
ative term, Q). This latter equation says that the relative growth rate, Q′/Q, is a constant,
r, allowing us a first principles understanding of the r parameter as the relative growth rate. The
solution would now be exponential, Q(t) =Qoe

rt and P(t) =Q′(t) = rQoe
rt. As desired, for a brief

time near the outset, the production rate starts close to zero and increases exponentially at relative
growth rate r. However such a model cannot be valid for an extended time period, as P(t) has no
maxima and never again declines (much less to zero). Rather, P(t)→∞ as t→∞, violating the
physical limits for a finite resource. To get the production rate to reach a maximum, and decline
again toward zero (producing the characteristic bell shape), the model must limit the growth
term. Thus, the “limiting term” begins to take effect as Q increases, thereby reducing the effective
relative growth rate.

So when Q(t) is not small, the limiting term, (1 − Q(t)/Q∞) is not one, has effect, and cannot be
ignored. Again dividing by Q, eq. (3) can be written Q′(t)/Q(t) = r(1 − Q(t)/Q∞). Now it is appar-
ent that the relative growth rate is not the constant r, but rather a linearly decreasing function of
Q, whose value near the outset is close to r, and decreases to zero as Q(t) grows to Q∞. Thus, as
Q(t) (and therefore its derivative, P(t)) initially grows exponentially, the limiting term (1 −Q(t)/Q∞)
decreases. This decrease in the limiting term causes the production rate Q′ = P to peak and then
to decline. Because the production rate declines to zero (as desired) as the cumulative amount grows
toward Q∞, it does so increasingly slowly and never exceeds Q∞. Thus, Q∞ represents the UR, the
amount Hubbert carefully estimated to answer question 1, before using it in his logistic model to
answer question 2. With this interpretation of Q∞ as UR, the limiting term represents the propor-
tion of world oil remaining in the ground at t. The authors view the magnitude of Q(t) as a proxy
measure of the current size of the aggregate global oil economy, including the amounts invested
in equipment and oil infrastructure, the number of uses of oil, and the sheer number of end users.
In this view, the rate of change, P(t) =Q′(t), would indeed be proportional to Q(t), as per the logistic
model in eq. (3).

Thus, the logistic differential equation, eq. (3), has the following fundamental dynamic interpretation
in the context of resource extraction: it models a production rate that changes (grows or declines)
simultaneously proportional to

1. the current cumulative resource extracted—a proxy measure of the current “size” of the world
oil economy, driving production growth; and

2. the current remaining amount of unextracted resource—the increasing production difficulty as
remaining resource shrinks growth and limits the influence of the cumulative amount.

The parameter r is the relative growth rate of cumulative extracted resource, in the absence of any
resource limit. The parameter, Q∞, represents the physical resource limit, the UR.

The solution of the logistic equation, eq. (3), is achieved by the standard technique of separating
variables and integrating, which yields:
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QðtÞ = Q∞

1þ eb−rt
, t ≥ 0 (4)

from which P(t)=Q′(t) is given by eq. (1) (see Figs. 3a and 3b). The characteristic shape of Q(t) is
sigmoidal, rising asymptotically from 0 as t increases from −∞, passing through an inflection point,
and asymptotically growing to Q∞ as t→∞. It is symmetric about its inflection point, t*= b/r, where
P′(t*) =Q″(t*) = 0. Therefore, at the inflection Q(t*) =Q∞/2. Consequently P(t) is symmetric about
its peak, P(t*)= rQ∞/4= Pmax. Thus, according to Hubbert’s model, exactly half the resource remains
in the ground at the time when the production level peaks. Subsequent declines in the production
level precisely mirror the swiftness of the earlier production level rise.

Hubbert model versus current data
So what do the data show? We make three comparisons: Hubbert’s 1956 model versus subsequent
data for the US, Hubbert’s 1956 model versus subsequent world data, and finally world data to 2016
used to “best fit” an updated Hubbert logistic curve.

Hubbert model versus US data
When Hubbert applied his model to oil production for the continental US (with two different esti-
mates for the ultimate resource), the larger of the two UR estimates correctly predicted the peak pro-
duction to occur in 1970 as shown by Hubbert (1956, fig. 21). As described previously, the model also
predicts a subsequent steep production rate decline, mirroring the prepeak exponential rise. The BP
data (BP 2017b) shown in Fig. 4 certainly show the celebrated peak in 1970, cementing the impact
of Hubbert’s model. However, the subsequent decline is not symmetric with the earlier rise and so
fails to follow the model logistic curve as predicted. Increases in the late 1970s, because of new large
discoveries in Alaska, and the current remarkable rise since 2008 make the present production rate
higher than at the 1970 peak. The current increases are due to the advent of a new technology: frack-
ing, a process that has made so-called “tight oil”3 economical to extract. Of course, other technologies
created since 1956 have also had impact on production, such as deep water drilling platforms and
horizontal drilling. From the clear evidence of the data, Hubbert’s logistic model as applied to the
US appears unable to answer either of the two fundamental questions. Despite the success of
the initial prediction of peak oil for the US, the Hubbert model does not seem to adequately capture
the fundamental dynamics.

Fig. 3. Generic logistic curve and anti-derivative curve.

3Oil trapped in layers of shale and sedimentary rock, rather than pooled in reservoirs.
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Hubbert model versus world data
The situation for Hubbert’s 1956 model predictions for world oil (peak production rate, time of
peak, and UR) are all inaccurate. The world cumulative oil (extracted) is shown in Fig. 5 and
results from adding the BP production data in Fig. 1b to Gallagher’s estimate for the year 1966
Q = 185.226 Gbbl (see Gallagher (2011), table 1, p. 793). Whereas Hubbert’s careful estimate of
world UR was Q∞ = 1250 Gbbl, world cumulative oil exceeded that amount in 2011 and stands
at 1423 Gbbl in 2016, (see Fig. 5) with an additional 1706.7 Gbbl of proven reserve. (Fig. 1a.)
Additionally, the predicted peak production rate of 12.5 Gbbl/year, which was to occur in the year
2000, was exceeded a mere 10 years later in 1966. As of 2016, the world production rate is up to
35.24 Gbbl/year, is still rising (the regression line slope is about 1% or 0.33 Gbbl/(year·year) since
1965), and has no apparent peak in sight (see Fig. 1b). Again the Hubbert model has turned out to
be inaccurate.

Using Hubbert logistic model to predict UR
Perhaps the Hubbert model can be updated from the current data? Using the BP world production
and cumulative oil data to 2016, fitted to the Hubbert model, the computed “best” value for the
parameter Q∞ would be the predicted UR. This fitting can be accomplished in two ways. In the first,
noting that P =Q′ by definition and letting Y= P/Q be the relative rate of change of Q, rewrite the
logistic equation, eq. (3), as

YðtÞ = r þ sQðtÞ, with Q∞ = −r=s (5)

This is called the “Hubbert linearization” (Hubbert 1982). Now the variables (Q, Y) must be linearly
related. Thus, data point pairs, (Qi, Yi)= (Q(ti), P(ti)/Q(ti)), i= 1 : : : 52, can be used to find the stan-
dard regression line. From this method, the BP data produce best fit values: r = 0.0703 per year,

Fig. 4. British Petroleum (BP) data for US oil production, 1965–2016.
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Q∞= 1739.85 Gbbl, with the correlation coefficient −0.9097. The disadvantage of this method is that
although the differential equation has been “fit”, it has not been solved; there is still a free initial con-
dition (arbitrary constant of integration). To plot the solution curve given by eq. (4), a particular
Q value (usually the first or the last data point) has to be arbitrarily preferred by being forced onto
the model curve. Rather than arbitrarily preferring a single data point, we will use an alternative
approach to fit the data to the logistic model.

The second technique allows the solution curve for the logistic equation, eq. (4), to be fit with the con-
stant of integration left as one of the fitted parameters. Again we use linear regression, despite the
curve’s nonlinear form, and its three independent parameters. Rewriting eq. (4) as:

b − rt = lnðQ∞=Q − 1Þ (6)

we again define a new variable, Y(t; Q∞)= ln(Q∞/Q− 1), which is linearly related to t for each (fixed)
value of the free parameter Q∞. Therefore, the data (ti, Yi), where Yi= Y(ti; Q∞), produce a standard
linear regression formula for intercept and slope parameters, b= b(Q∞) and r= r(Q∞), for each fixed
value of Q∞. Now construct the squared-deviation error function:

EðQ∞Þ =
X52
i=1

�
QðtiÞ −

Q∞

1þ ebðQ∞Þ−rðQ∞Þti

�
2

(7)

and minimize this function numerically or graphically (Maple® 15 produces a strong visual minimum
in the plot). This second technique has the advantage of fitting three free parameters and does not
require discrete slope data. From this method, the BP data produce best fit values: r= 0.0617 per year,
b = 2.2305, and Q∞ = 1922.5 Gbbl, with root mean square error 19.6 Gbbl. Thus, the current data,
applied to Hubbert’s model, predict UR to be just <2000 Gbbl.

Fig. 5. World cumulative oil, 1980–2016. BP, British Petroleum.
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The Hubbert cumulative model curve with UR set to 1922.5 is plotted against the BP data in Fig. 6.
The fit looks very good. However, the current world reserve of 1706.7 Gbbl added to the current
cumulative of 1423 Gbbl means that true UR is certainly larger than the sum, 3.1 trillion barrels.
Therefore the predicted amount of 1922.5 Gbbl is far too small. Put another way, if Fig. 6 is correct,
the world has only a half-trillion barrels of oil currently remaining, and peak oil occurred when
Q(t) = 961.3 Gbbl back in 2001. Clearly the Hubbert model remains inaccurate, even when applied
using up-to-date data.

A system of ordinary differential equations: A Hubbert
variant
Given that we have demonstrated the inaccuracy of the Hubbert logistic model, eq. (3), to adequately
capture the dynamics driving the data sets for reserve, production, and cumulative extraction of world
oil, answers to our questions 1 and 2 seem elusive. The particular problem seems to be the ongoing
growth of reserve, making earlier estimates of UR either wrong or, at best, poorly justified.
As Morehouse (1997, p. vii) stated, “reserves growth” is an “intricate puzzle”, and he names the
phenomenon “ultimate recovery appreciation”, “the generally observed increase of EUR over time”.
Reserve growth is driven by two related factors: the discovery of new oil fields and technological
innovation (both new and improved technologies).

As an example, we point to the case of the Hibernia oil project off the coast of Newfoundland,
Canada. When the original development project was submitted for government approval before
production began in 1997, the application included a reserve estimate of “recoverable oil of
563 million barrels” and a lifespan of about 20 years. However, CBC News reported in
December 2016 (Roberts 2016), that the billionth barrel was pumped on the 21st of that month,
and that the current expectations are for production to continue until about 2040, recovering
1.6 billion barrels cumulative. The reserve growth is due in part to new abilities to extend drilling
horizontally.

Fig. 6. Hubbert cumulative oil with best-fit UR. BP, British Petroleum; UR, ultimate resource.

Jones and Willms

FACETS | 2018 | 3: 260–274 | DOI: 10.1139/facets-2017-0097 269
facetsjournal.com

FA
C

E
T

S 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y 
18

.2
24

.6
1.

12
 o

n 
05

/1
3/

24

http://dx.doi.org/10.1139/facets-2017-0097
http://www.facetsjournal.com


The report is striking; after exceeding the oil-field production target by 77% and approaching the end
of the projected lifespan of the field, the reserve remaining actually exceeds the original projections of
the resource. One wonders whether this same report will be repeated in a further 20 years, with an
announcement that the remaining oil still exceeds a half-billion barrels. Yet such a possibility cannot
be discounted, even while reason suggests the process cannot continue indefinitely.

A successful oil production model must account for the phenomenon of reserve growth. A wide variety
of Hubbert model variants have been proposed in the literature. These include multi-Hubbert, modified
Hubbert, and higher-order Hubbert models, such as those proposed by Campbell and Laherrère (1998),
Berg and Korte (2008), Sorrell and Speirs (2010), Maggio and Cacciola (2012). Various other curve-
fitting processes have also been employed (see Lynch (2003) and Brandt (2010)). Here we propose a
simple, new, “Hubbert variant” model that allows for dynamic reserve growth with a reasonable justifi-
cation. The model is a system of two time-autonomous differential equations, one for cumulative oil,
Q(t), and a second for reserve, R(t), including three positive-value parameters:

Q 0ðtÞ = ρQðtÞRðtÞ (8)

R 0ðtÞ = −P þ αð1 − βRÞR (9)

The first, eq. (8), reproduces the Hubbert logistic model with one modification. Here, the growth-
limiting term, the remaining unextracted resource, Q∞ − Q(t), has been replaced by the current
reserve, R. Because reserve is only the best 1P estimate of the remaining resource, as R(t)≤Q∞−Q(t),
the impact of this new growth-limiting term is felt earlier in the time history.4 The second,
eq. (9), says that the rate of change of the reserve has two independent (additive) factors. The first
of these is obvious: reserve declines at an annual rate equal to the amount extracted each year by
the current production rate, P. The second term also allows reserve to grow logistically, with relative
growth rate α and growth-limiting constant β. In this view, reserve, like a water-loaded sponge,
can always have some additional percentage α of the current loading R added to R, because we
can squeeze the sponge. Here the ability to “squeeze” the sponge mimics the effect of technology-
driven resource expansion. However, this process cannot continue indefinitely and growth is
therefore limited by the factor (1 − βR).

Note that in the limiting case where reserve is not allowed to grow (i.e., take α= 0), the model reverts
to the Hubbert model. Setting α = 0 in eq. (9) makes R′ =−P =−Q′ (with the latter equality by the
definition of production rate). Integrating now implies that R(t) =−Q(t) +Q∞, where the constant
of integration is chosen to match the total reserve when cumulative is zero, i.e., when reserve was
UR. Using this expression to replace R in eq. (8) and recalling that ρ = r/Q∞, we recover the
Hubbert model. Therefore, when we express the solution of the Hubbert model in (Q, R) coordinates
(with Q on the horizontal axis), the curve is the straight line, R+Q=Q∞, with time increasing along
the line to the right—the direction of increasing cumulative. For different assumed values of Q∞ the
Hubbert lines are all parallel, with intercept values Q∞ on both axis. In Fig. 7 two possible Hubbert
lines are plotted, the first using the current, 2016, value of R+Q= 3130 [Gbbl] as the Q∞.

The Hubbert variant model can be solved analytically: dividing eq. (9) by eq. (8) and using the chain
rule yields a linear differential equation for R as a function of the independent variable, Q:

R 0ðQÞ þ αβ

ρQ
RðQÞ = −1þ α

ρQ
(10)

4Note, the relative growth rate parameter, r from the Hubbert model corresponds to a rescaled ρ= r/Q∞ here.
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which is solved in the standard way. The solution is:

RðQÞ = 1
β
−

Q
1þ a

þ c
Qa (11)

where c is the arbitrary constant of integration and a represents the collection of parameters a = αβ/ρ.
The model, eq. (11), has three, positive parameters to be determined, a, c, and 1/β. We used the
“NonlinearFit” routine of the Maple® 15 mathematics package to find optimal values (in the least
squares sense) for these parameters to best fit this model equation to our 37-point data sets for R
and Q. The result is plotted in Fig. 7, in the plane of cumulative versus reserve.

The “best fit” Hubbert variant model curve in Fig. 7 does fit the BP data reasonably well. From the
graph, the horizontal intercept where R = 0 is interpreted as the UR. The model predicts a UR of
5484.2 Gbbl, answering question 1. Using this value as Q∞ produces the second Hubbert line on the
plot. Given that all Hubbert model curves (for any chosen value of Q∞) are lines parallel to the two
in Fig. 7, it should be clear that none bear any resemblance to the actual data. This observation again
confirms that the Hubbert model for world oil is highly inaccurate and is therefore refuted. To some,
the above predicted UR (5.5 terabarrels (Tbbl)) may seem unjustifiably high.

As for the variant model, we add the following observations. Time is an (unknown) parameter
along the curve. Differentiating eq. (8) with respect to time (having first replaced R with
R(Q(t)) from eq. (11)) and numerically finding the zero, allows us to say, definitively, that the best
fitting model of this type predicts peak world oil production to occur when the cumulative
amount of oil is Q = 2998 Gbbl, for which the corresponding reserve has declined to
R = 1199.7 Gbbl. To determine the time at which this event occurs requires us to estimate the
parameter ρ in the differential equation, eq. (8). Unfortunately, there is no analytic solution avail-
able to allow the parameter to be estimated from the data to minimize the error. However, we can
make the following rough estimate of ρ; using the most recent (2016) data value for Q, P, and R,
we estimate ρ = P(2016)/[Q(2016)R(2016)]. Now eq. (8) can be solved numerically, using the ini-
tial condition of Q(2016), thereby creating a time series for Q. Then peak world oil occurs when
Q = 3000, for which t = 73.8 [years since 1979], i.e., 2052. The production level at that time is
approximately 50 Gbbl/year, which is almost 50% higher than current production. This estimate
for the timing of peak oil is an upper bound on values produced by various estimates of the
parameter, ρ. Also, world cumulative exceeds Q = 4 Tbbl about 2075 and production effectively

Fig. 7. World reserve vs. cumulative, 1980–2016. BP, British Petroleum; UR, ultimate resource.
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ceases by the time Q = 5.4 Tbbl at 2160, giving a rough answer to question 2. We reiterate that
these are just rough estimates: the computed time value and production value for the “peak” are
sensitive to the estimate of ρ in eq. (8).

Conclusion
Hubbert need not feel alone in making unrealized predictions concerning world oil production. In a
comprehensive review article Brandt (2010, p. 3958) classified 45 “mathematical models of oil
depletion of the last century”, all of which attempt to forecast future oil production paths (most with
global scope). Concerning the predictive capacity of all of these models, he concluded:

Existing models have fared poorly in predicting global oil production. Even for models
that are commonly thought to be successful, after-the-fact interpretation of the suc-
cess or failure of a predictive effort is not easy (recall the discussion above of
Hubbert’s successful prediction). : : : This author’s judgement with respect to the pre-
dictive value of models is as follows: : : : There is no scientific justification for making
specific predictions (e.g., the year of peak production) with any of the surveyed math-
ematical models: the uncertainties involved make such predictions of little use.
(Brandt 2010, p. 3972)

Despite this advice, “Peak Oil” papers and predictions continue to be published and then proven
false. For example, Mohr and Evans (2008) made a 2007 prediction for (UR) 2.2 trillion barrels with
a world oil production peak in 2013, with the caveat that the peak will be somewhat later if the UR
reaches 3 trillion barrels. However, the data (Figs. 1a, 1b, and 5) show that the 2016 value of
R +Q = 3130 Gbbl is already >3 trillion barrels, with no production peak in sight, therefore com-
pletely refuting the predictions. As a final example, Gallagher (2011) used an “idealized Hubbert
curve” to make a 2010 prediction that peak oil had just occurred in 2009 at 30.4 Gbbl/year with
UR of 2.24 trillion barrels. Again, these values have already been surpassed, indicating that the pre-
diction has failed.

Brandt ended the earlier quote of his conclusions concerning oil production predictions with the
following exhortation (Brandt 2010, p. 3972): “Efforts should move away from making these
kinds of predictions, and toward understanding the impacts of the inevitable transition to oil
substitutes.”

And so we are back to the beginning: we have not provided credible answers to either of the two fun-
damental questions. We acknowledge that the answers are elusive because prediction (beyond pre-
dicting a regression line trend for the very near term) is extremely difficult. Clearly the underlying
dynamics of reserve growth are poorly understood, and though many have made oil production peak
and depletion time predictions, none can be trusted. Finally Brandt (2010) points us towards contem-
plation of the broader aspects of the investigation, along the lines of the question from Science (Kerr
and Service 2005): “What can replace cheap oil—and when?”
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