
A graduate student perspective on
overcoming barriers to interacting
with open-source software

Oihane Cerecedaa*, and Danielle E.A. Quinnb*
aFaculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NL A1C
5S7, Canada; bFaculty of Science, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada

*danielle.quinn@mun.ca; occ356@mun.ca

Abstract
Computational methods, coding, and software are important tools for conducting research. In both
academic and industry data analytics, open-source software (OSS) has gained massive popularity.
Collaborative source code allows students to interact with researchers, code developers, and users
from a variety of disciplines. Based on the authors’ experiences as graduate students and coding
instructors, this paper provides a unique overview of the obstacles that graduate students face in
obtaining the knowledge and skills required to complete their research and in transitioning from an
OSS user to a contributor: psychological, practical, and cultural barriers and challenges specific to
graduate students including cognitive load in graduate school, the importance of a knowledgeable
mentor, seeking help from both the online and local communities, and the ongoing campaign to
recognize software as research output in career and degree progression. Specific and practical steps
are recommended to provide a foundation for graduate students, supervisors, administrators, and
members of the OSS community to help overcome these obstacles. In conclusion, the objective of
these recommendations is to describe a possible framework that individuals from across the scientific
community can adapt to their needs and facilitate a sustainable feedback loop between graduate
students and OSS.

Key words: open-source software, graduate students, computational research, academic culture

Introduction
From flexible programming languages to task-specific software, computational tools contribute
significantly to research and development across both academia and industry (Prabhu et al. 2011;
Nangia and Katz 2017). In a 2017 survey of 209 members of the United States National
Postdoctoral Association, 95% of respondents said they use coding or software in their work, with
66% stating that their research would be impractical without the use of these tools (Nangia and
Katz 2017). Research in almost any discipline today acknowledges the role and importance of compu-
tational tools, with software as an increasingly common research product. In a broader perspective,
programming requires understanding the underlying processes, the application and interpretation
of solutions, and the implementation of the code to accomplish specific tasks.

Simultaneously, the job market places high demand on computational proficiency; 20% of the
26 million examined job postings in the United States in 2015 required programming or software
skills (Burning Glass Technologies 2016). No longer limited to traditional technical positions, these

OPEN ACCESS

Citation: Cereceda O and Quinn DEA.
2020. A graduate student perspective on
overcoming barriers to interacting with
open-source software. FACETS 5: 289–303.
doi:10.1139/facets-2019-0020

Handling Editor: Debra Clendinneng

Received: May 2, 2019

Accepted: November 18, 2019

Published: May 7, 2020

Copyright: © 2020 Cereceda and Quinn.
This work is licensed under a Creative
Commons Attribution 4.0 International
License (CC BY 4.0), which permits
unrestricted use, distribution, and
reproduction in any medium, provided the
original author(s) and source are credited.

Published by: Canadian Science Publishing

PERSPECTIVE

FACETS | 2020 | 5: 289–303 | DOI: 10.1139/facets-2019-0020 289
facetsjournal.com

FA
C

E
T

S
D

ow
nl

oa
de

d
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y
18

.1
18

.3
7.

24
0

on
 0

5/
18

/2
4

mailto:danielle.quinn@mun.ca
mailto:occ356@mun.ca
http://dx.doi.org/10.1139/facets-2019-0020
http://creativecommons.org/licenses/by/4.0/deed.en_GB
http://creativecommons.org/licenses/by/4.0/deed.en_GB
http://creativecommons.org/licenses/by/4.0/deed.en_GB
http://dx.doi.org/10.1139/facets-2019-0020
http://www.facetsjournal.com

skills are essential and marketable across disciplines including biology (Dreyfuss 2017; Carey and
Papin 2018), business (Daisyme 2019), engineering (Teles dos Santos et al. 2018), and arts and design
(Burning Glass Technologies 2016). With increasingly accessible technology, research, development,
and innovation evolve in parallel to advances in computational techniques. Thus, engagement and
involvement of both end-users and developers represents a valuable feedback loop.

Increasingly, the computational tools used in industry and research fall under the category of
open-source software (OSS), defined as software that not only provides users with access to the under-
lying source code, but also complies with additional criteria including (a) free redistribution,
(b) allowing of modification and distribution of derived works, and (c) having no discrimination
against persons, groups, or fields of endeavors (Open Source Initiative 2007b). This flexible, no-cost
solution for using, developing, and distributing code and software offers an ideal platform for the
development of new technologies and collaboration across and within diverse industries and
academic disciplines.

By tapping into the collective talent of OSS users and contributors, companies and researchers can
generate better products and services. During the 2014 Linux Collaboration Summit, Jim Zemlin,
the Executive Director of the Linux Foundation, recognized that OSS is changing the way companies
carry out business by linking industries and sharing resources (Vaughan-Nichols 2014). This means
that companies that use OSS platforms tend to integrate open source into their main resources; in
recent years, corporations including Microsoft, Amazon, and Google have released millions of lines
of open-source code and increasingly participate in open-source projects and communities
(Amazon 2019b; Google 2019b; Microsoft 2019a). Others, like Red Hat, focus exclusively on their role
as contributors and developers of OSS solutions (Red Hat 2019). Hecht and Clark (2018) referred to
open-source programs in large companies as a “best practice” and predicted a tripling of the number
of companies with such programs by 2020. In both industry and academic data analytics, open-source
scripting languages, including Python and R, have gained massive popularity (Geiger et al. 2018), with
obvious trends in OSS within-discipline as well. For example, in ecology a major shift has occurred
from the proprietary software SAS, commonly used between 1990 and 2008, to the OSS R. By 2013,
R was used three times more often than any other analysis software (Touchon and McCoy 2016).

In academia, the shift to OSS as the major analysis tool signifies that graduate students must over-
come the challenge of learning how to engage effectively with OSS and the OSS community. This
challenging and often nontraditional endeavor offers significant potential benefits to their own
research and career. The ability to interact with open and collaborative source code offers students
the opportunity to share their ideas locally and globally. Thus, students can develop novel computa-
tional resources specific to their field of study; collaborate and network with researchers, code devel-
opers, and users from a variety of disciplines; and self-promote by developing these same skills and
their contributions to the software (Schweik 2004; Stamelos 2011). Although specialists typically
review research papers, individuals from the OSS community, often with a variety of specialty back-
grounds, normally evaluate OSS contributions. These diverse perspectives help to improve the clarity,
reproducibility, and correctness of the code (Ghosh et al. 2012). Errors can be corrected through this
feedback process, ultimately validating the methodology, increasing the quality of the research using
the software, and effectively supporting traditional research products such as peer-reviewed papers
or dissertations.

Motivation, context, and scope
Despite these clear benefits, graduate students face obstacles at every stage of the learning process that
current standard practices in academia do not address. To the best of the authors’ knowledge, the
literature currently lacks any clear synthesis of these issues from the graduate student perspective.

Cereceda and Quinn

FACETS | 2020 | 5: 289–303 | DOI: 10.1139/facets-2019-0020 290
facetsjournal.com

FA
C

E
T

S
D

ow
nl

oa
de

d
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y
18

.1
18

.3
7.

24
0

on
 0

5/
18

/2
4

http://dx.doi.org/10.1139/facets-2019-0020
http://www.facetsjournal.com

This article is motivated by this notable gap, as well as by the experiences of the authors as Doctoral
students in Computer Engineering and Biology, respectively, and as coding instructors with a
combined 10 years of experience teaching open-source scientific programming to approximately
550 graduate students globally (as of late 2019). Thus, the points discussed herein are done so based
largely on the shared experiences and personal observations of the authors and the diverse group of
students they have interacted with and talked to about this topic.

This paper is intended for those in any discipline that involves some degree of interaction with OSS,
including both scientific (e.g., computer science, ecology) and nonscientific fields (e.g., library studies,
business). Written from a graduate student perspective, this discussion is intended for individuals in
any research-based postgraduate degree program, those who closely work with these individuals
(e.g., supervisors, researchers, administrators), and members of the OSS community; it is broadly
accessible for those with both limited and well-developed computational knowledge. Best practices
of coding and OSS use are not discussed herein; these topics have been discussed in detail by
Wilson et al. (2014) and Jiménez et al. (2017). This paper neither discusses the existing differences
in academic culture or research progression across countries or institutions, nor speaks to specific
programming software or languages.

This article first provides a unique, in-depth discussion of the many barriers that graduate students
face when learning, using, developing, and contributing to OSS in the context of their graduate
research, including cognitive obstacles and cultural shifts. Following this, it proposes a series of
practical guidelines for graduate students, supervisors, administrators, and OSS community members
to help reduce and possibly eliminate these barriers. If maintained over time, these proposed actions
aim to establish and normalize practices at all levels of academia and OSS that may facilitate a sustain-
able framework for the continued development of OSS in research while also boosting student success
and confidence.

Barriers to learning computational skills
Many barriers exist, and not every graduate student will face them all. Indeed, a wide variety of factors
shape and influence everyone’s experience including field of study, institution, supervisor, peer
support, project specifics, and prior knowledge. The impact of and response to individual barriers
are not independent but rather interactive and cumulative; the academic and OSS communities must
recognize likely population-level consequences of these barriers that limit progress across domains.

Inconsistencies in training
When students enter graduate school, the discovery that their research will require or improve signifi-
cantly with data cleaning and other computational skills may cause significant uncertainty. Although
most consider programming and the ability to use software programs “hard skills”—teachable abilities
that can be defined and measured—inconsistencies and gaps in the training provided to students exist
across and within disciplines. Of 55 geography departments of US institutions examined in 2017, 80%
offered a programming course, but <11% of the undergraduate degrees offered by these departments
required the completion of any programming course (Bowlick et al. 2017). Touchon and McCoy
(2016) reported that only 25% of 154 ecological doctoral programs examined required that students
take a biostatistics course, which is the primary way that most ecologists apply OSS to research.
This reflects an ongoing issue; over a decade ago, in 2008, a workshop jointly organized by the
International Union of Biochemistry and Molecular Biology and the Federation of Asian and
Oceanian Biochemists and Molecular Biologists had already identified the absence of a standard
means of measuring or classifying the computational skills of biology graduates as a major hindrance
to the development of bioinformatics graduate education (Tan et al. 2009). As recently as 2017,

Cereceda and Quinn

FACETS | 2020 | 5: 289–303 | DOI: 10.1139/facets-2019-0020 291
facetsjournal.com

FA
C

E
T

S
D

ow
nl

oa
de

d
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y
18

.1
18

.3
7.

24
0

on
 0

5/
18

/2
4

http://dx.doi.org/10.1139/facets-2019-0020
http://www.facetsjournal.com

computational training has been identified as an unmet need that continues to be underprioritized; in
the case of surveyed biologists, this lack of training was seen as the most important limiting factor in
their ability to use the data generated by their research (Barone et al. 2017). Today, engineering
programs usually require that students complete an introductory programming course, but the links
between programming and research are often unclear. While both the breadth and depth of pre-
and early-graduate school computing experience and instruction varies among specific disciplines,
institutions, and research labs, many new graduate students lack the necessary computing knowledge
and skills required for their research project and nor are there opportunities available to gain these
skills through traditional or standardized ways (Katz et al. 2018).

Skill assessment
A significant barrier to graduate students at this early stage of their academic career is the need to
assess their own programming skills and the skills needed to accomplish their research goals without
having appropriate background on the topic or a means by which to undertake an assessment. The
complexities surrounding the ignorance of one’s own ignorance was discussed by Dunning (2011);
the well-known Dunning-Kruger Effect states that poor performers in a domain are largely unaware
of their own deficient skills or knowledge. This burden weighs heavily on graduate students struggling
to assess their programming skills and deciding how much time and effort they need to develop these
skills. Here, a knowledgeable and objective supervisor1 is essential for providing guidance to their
students about how to plan and conduct research (Alharbi and Jacobsen 2016). However, in the
context of determining current and required computational skills of students, the success of this guid-
ance is likely to depend on a supervisor’s own computational skills and knowledge, which may be lim-
ited or outdated as a result of the relatively recent surge in the diversity and use of OSS across
disciplines. Developing computational skills, whether out of necessity or in supplement, delays initial
research progress. Graduate students must adhere to institutional deadlines and typically depend on
limited funding that may require additional responsibilities such as teaching. These time-consuming
demands ultimately add burden and stress to a valuable training process. Whether students lack
awareness of the training process, or appreciate and embrace the challenges they face, committing
the time to develop these skills add risk. As will be discussed in more detail herein, the pursuit of these
skills introduces additional barriers to students, including cognitive obstacles during the learning
process, a lack of guidance and resources, and technical difficulties linked to gaps in general
knowledge and experience in using computers.

Cognitive obstacles
Faced with the daunting task of learning to program, students often experience obstacles that span
many learning environments and are well described by cognitive and educational psychologists
(Murphy and Thomas 2008; Cutts et. al. 2010). Most of the graduate students the authors have inter-
acted with report that they seek out coding as a tool to accomplish a task related to their research
objectives, rather than specifically to learn to program. This is further evidenced by researchers spend-
ing significant amounts of time applying code written by others, rather than attempting to write origi-
nal code (Nowogrodzki 2019); half of UK-based academics surveyed in 2014 reported that they do not
write their own software (Smith et al. 2018). Students learn code while also trying to apply these new
skills to solve additional problems such as unfamiliar statistical analyses or data transformation; all in
addition to managing other research tasks. According to cognitive load theory, these extraneous
pieces of information can overwhelm the limited capacity of a student’s working memory, leading
to problems in learning and retaining new information (Sweller et al. 2011). Students belonging to

1Here, supervisor refers to the faculty overseeing the graduate student project, and in various contexts may also be
known as the “principal investigator” or the “thesis director”.

Cereceda and Quinn

FACETS | 2020 | 5: 289–303 | DOI: 10.1139/facets-2019-0020 292
facetsjournal.com

FA
C

E
T

S
D

ow
nl

oa
de

d
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y
18

.1
18

.3
7.

24
0

on
 0

5/
18

/2
4

http://dx.doi.org/10.1139/facets-2019-0020
http://www.facetsjournal.com

underrepresented groups in computing may experience additional mental strain in the form of stereo-
type threat, a fear of conforming to negative stereotypes that may reduce situational performance
(Steele and Quinn 1999).

Students require clear analysis objectives to focus their learning. Overwhelmed students often miss out
on necessary discussions about the relative importance of syntax specifications, programming concepts,
and tool utility in the context of their research and the degree of knowledge and skills needed for each.
Without clear objectives and specific knowledge of these new tools, the task of “learning to code” may
seem insurmountable to many students. Often students turn to popular online resources, but these
resources can be problematic if consumed out of context and the messages that often accompany these
resources further increase coding anxiety. For example, some resources claim that only passionate indi-
viduals willing to put in the years of effort needed to reach a “master” level should learn programming
(Flombaum 2017), providing groundless guidelines about the time commitment required—“a mini-
mum of 3 months [on a schedule of] 11 am to 11 pm” (Kusanagi 2016)—or emphasize that
“programming requires being able to absorb a huge swath of ever-changing information” (Pratt 2017).

Struggling students may suffer from a fixed mindset, believing that their abilities or talents are
predetermined or innate (Dweck 2007). Comments such as “programming is not for me” or “I’m just
not good at coding” reveal this attitude. Unfortunately, blogs, discussion boards, and online articles
often support these misconceptions (e.g., Flombaum 2017; Pratt 2017); graduate students are likely
to stumble upon such sources of information in the early stages of the learning process when alterna-
tive resources are unavailable. A reluctance to take opportunities to learn and declining effort when
faced with errors often accompanies a fixed mindset (Dweck 2007). Students often interpret coding
errors as a reflection of their own abilities rather than recognizing their inevitability and framing them
as valuable learning opportunities (Rodrigo et al. 2009; Brown et al. 2018; Carey and Papin 2018).

Knowledge constraints
A lack of available guidance and resources during the learning process often compounds psychologi-
cal demotivators. In the earliest stages of learning, students often miss important conversations about
tool availability and the advantages and limitations of each or miss the significance of these conversa-
tions (Bacharakas 2018). As a result, they may choose software suboptimal for addressing their
research problem or supporting their long-term career goals. Initial and ongoing technical considera-
tions such as software installation, operating system compatibility issues, version control, interface
options (e.g., R Commander, RStudio, R Notebooks), software launching, directory navigation, and
data formatting prompt set-up routines that introduce some degree of dependency. This is particu-
larly problematic for students who use institutional laptops and lack the administrative permissions
required to install and update software. The complexity of software installation and configuration
can potentially lead to confusion or technical problems that can waste time and demotivate students,
especially those with limited computer knowledge (List et al. 2017). These knowledge gaps create
obstacles in many ways; for example, a student may have difficulty importing a data set without a
general understanding of directory structure or if the file format does not conform to the analysis
software requirements (Baker 2017).

After overcoming software installation and configuration, students may be eager to quickly solve
complex research tasks, but they must first (i) learn the basics of coding, including vocabulary and
grammar; (ii) be aware of how to apply code in a practical way; and (iii) understand how to approach
these workflows. Students face a steep learning curve, and where they cannot access formal training
through traditional course-based means, students must take responsibility in finding and using online
resources, local peer-instruction groups (e.g., Dreyfuss 2017), or other learning opportunities such as
workshops or tutorials (Baker 2017). In possible cases where supervisors lack familiarity with a tool,

Cereceda and Quinn

FACETS | 2020 | 5: 289–303 | DOI: 10.1139/facets-2019-0020 293
facetsjournal.com

FA
C

E
T

S
D

ow
nl

oa
de

d
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y
18

.1
18

.3
7.

24
0

on
 0

5/
18

/2
4

http://dx.doi.org/10.1139/facets-2019-0020
http://www.facetsjournal.com

cannot keep up with the current state of research computing, or simply lack awareness of the value of
these skills, students might need to defend the time dedicated to this learning process because
progress toward their specific research goals may appear slow.

Seeking help
As students gain foundational skills and begin tackling higher-level research tasks, they will face hurdles
such as interpreting error messages, applying unfamiliar functions, and uncertainty about availability of
prewritten code for completing common analysis tasks. Success depends upon finding solutions to these
problems, but students may hesitate to ask for assistance. At this stage, many students consult
notoriously problematic OSS documentation, unaware of its limitations. A survey of GitHub users
showed that 93% of respondents reported problems with incomplete, outdated, or confusing OSS
documentation (Geiger et al. 2018). Even well-documented contributions include technical language
outside of the scope of student’s knowledge, forcing them to seek further help online or locally.

While searching for solutions online, students often visit StackOverflow (stackoverflow.com), a
valuable community question-answering website where students can browse previously submitted
questions and responses or submit their own questions. Community question websites, including
StackOverflow, often offer community members who answer questions at high levels of understand-
ing or use technical terminology outside the scope of student’s knowledge, especially when the
question is not placed in an appropriate context. Students provided with both a solution and explan-
ation of the solution to a specific problem learn more effectively than those provided with only a sol-
ution, if the delivery of the explanation coincides with the level of the student’s current understanding
(Webb 1989). Question quality is important because high-quality questions can attract more users
and result in high-quality responses (Ravi et al. 2014). However, students unaware of what makes a
high-quality question may make errors in their inquiries, such as using ambiguous terminology, not
clearly stating the problem, not contextualizing the problem, or not demonstrating what background
research they have done to address the problem themselves, including ensuring that the website does
not already answer their question. These oversights can reduce the number and quality of responses to
their question and increase the chances of receiving a rude or condescending response from a frus-
trated community member. Such responses may discourage students from asking future questions
or lead them to simply use solution code without gaining an understanding of why or how it works.

Interaction and involvement with online communities outside offers an invaluable resource to
increase understanding and use of OSS, but it requires that students gain some understanding of the
structure and culture of such communities. The online presence of each OSS community is unique
in scope and form, but may include activity on various social media platforms such as Twitter, chat
platforms such as Slack, and community sharing through tutorials or blog posts (Carey and Papin
2018; see Amazon 2019a; Google 2019a; Microsoft 2019b). Graduate students often lack awareness
of these informal but powerful means of connecting with other users and developers of OSS.
Similarly, students might be unaware of local resources such as student-led study groups, formalized
help centers on campus, and relevant community meet-up groups. As a result, it is possible that
students unknowingly disconnect from peers at the same institution or even within the same depart-
ment who face similar challenges in learning and using particular software. Lack of availability of
these local resources (both on and off campus) represents a significant gap that needs to be addressed
at both institutional and community levels.

Barriers to contributing to OSS
Despite seemingly overwhelming challenges, many graduate students build strong programming
skills. Some students could potentially transition from learners and users to developers and

Cereceda and Quinn

FACETS | 2020 | 5: 289–303 | DOI: 10.1139/facets-2019-0020 294
facetsjournal.com

FA
C

E
T

S
D

ow
nl

oa
de

d
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y
18

.1
18

.3
7.

24
0

on
 0

5/
18

/2
4

https://stackoverflow.com
http://dx.doi.org/10.1139/facets-2019-0020
http://www.facetsjournal.com

contributors. A review of bioinformatics education at both the undergraduate and graduate levels
recognized a need for better training of future professionals not only as consumers of computational
tools, but also as producers of tools and resources (Magana et al. 2014). This new role includes
documenting and sharing code on an accessible platform such as GitHub, receiving and providing
feedback, and contributing to the OSS community in other ways, such as organizing resources, creat-
ing tutorials, teaching others, translating or improving existing documentation, and participating in
discussions. These steps offer a particularly powerful means for graduate students to develop their
ideas, work in a collaborative environment, continue to build their programming skills, network with
peers and professionals, develop marketable skills like teamwork and interdisciplinary research, and
achieve self-promotion through their technical contributions (Schweik 2004; Stamelos 2011).
Unfortunately, newcomers, which includes graduate students, may rarely accomplish or even attempt
these tasks due to a variety of barriers (Steinmacher et al. 2015).

Cultural obstacles
As noted by Smith et al. (2018), there is a lack of systems in place for rewarding software-based
contributions to research. This is reflected in graduate schools and academic culture today through
the lack of associated curricula and the perceived unimportance of such contributions. While students
explicitly learn about the process of publishing research results as a traditional manuscript in a peer-
reviewed journal, comparatively little discussion focuses on the role or importance of publishing code
or software or software-related articles. However, traditional manuscripts increasingly include
research code and data as supplemental components and some scientific journals now expect it.
Although this change represents an important step toward reproducible and transparent science,
many students, unaware of their options, might publish “software articles” as a placeholder before
receiving credit for their work in traditional formats (Smith et al. 2018). Current publication practices
may not acknowledge other code or software-based contributions as primary research products; for
instance, these contributions may be omitted from calculations of author metrics on systems such
as Google Scholar Citations and Mendeley (Martín-Martín et al. 2018).

Reward systems driving career progression such as tenure reviews and funding applications focus on
traditional research contributions and subsequently measure productivity and success in terms of
publications and citations of peer-reviewed research papers (Hey and Payne 2015). These metrics
do not adequately capture the full range of contributions in modern computational research (Smith
et al. 2018). Similarly, degree requirements and institutional expectations of dissertation structure also
bias toward traditional research contributions and rarely recognize code—even well-documented,
peer-reviewed code—as a comparable product. The computational portion of a student’s work, which
typically represents a major time commitment, valuable skill development, and potentially significant
contributions to the discipline, may end up relegated to appendices or ignored altogether. Other
means of contributing to the OSS community, such as creating tutorials or organizing existing resour-
ces are recognized as extracurricular volunteer work, at best, and play little or no role in degree
progression. Thus, those students who devote time to publishing their code and contributing to OSS
do so at the risk of delays in degree or career progress, and may face criticism from supervisors and
peers despite the inherent value of these tasks, which may be sought by industry (Learner et al.
2006; Smith et al. 2018).

Other constraints
In addition to the challenges associated with academic culture, few graduate students are prepared for
roles as contributors to OSS. A recent survey by Mozilla of university students who wanted to contrib-
ute to OSS but were unable to revealed that nearly 70% cited “not knowing where to start” as the
primary reason they did not contribute (Bacharakas 2018). Graduate school curricula may not include

Cereceda and Quinn

FACETS | 2020 | 5: 289–303 | DOI: 10.1139/facets-2019-0020 295
facetsjournal.com

FA
C

E
T

S
D

ow
nl

oa
de

d
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y
18

.1
18

.3
7.

24
0

on
 0

5/
18

/2
4

http://dx.doi.org/10.1139/facets-2019-0020
http://www.facetsjournal.com

the practical skills needed for contributing, including where and how to share code, where and how to
ask for feedback, and general knowledge about licensing and maintenance responsibilities. These
knowledge gaps may be particularly daunting and complex in instances where graduate students have
adapted another user’s code for their own purposes, which is the case most often seen by the authors.
Unfortunately, newcomers who join the OSS community with limited practical knowledge of contrib-
uting rarely become long-term contributors, in part because of a notable absence of mentoring in the
OSS community (Mendez et al. 2018). Steinmacher et al. (2015) provided evidence that a lack of social
interaction between newcomers and the OSS community may represent as significant a barrier to
contributing as a lack of technical skills.

Would-be contributors face a new set of psychological challenges. Both students and well-established
scientists worry that their code and documentation are not sufficiently polished, and that they will
face judgement for poor variable names, misused technical terminology, or errors in their code
(Barnes 2010). Although it is important that users validate their code, especially code that may have
been reverse engineered or adapted, students may fear that errors in their code will poorly reflect
the quality of their research. These concerns and overall lack of confidence decrease the likelihood
they will share or publish their code even if the value of such a contribution is high (Barnes 2010;
Bacharakas 2018). Graduate students are not taught and are unaware that unpolished code is normal
and acceptable even among professional software developers, and code that accomplishes something
others are also trying to accomplish represents a valuable contribution that should be shared and
reviewed (Barnes 2010).

Recommendations
Barriers discourage graduate students at every stage of the learning process and hinder the advance-
ment and adoption of both programming and OSS community involvement as interdisciplinary tools
in academia. As these skills become increasingly important across and within disciplines, graduate
students, supervisors, administrators, and OSS community members must address these barriers in
a systematic and intentional way.

Appropriate and accurate skill assessment, both of self and of others, is a complex component of
many of the barriers discussed herein. Recognizing this, the authors recommend ongoing communi-
cation among those interacting with OSS, which facilitates access to instructors and mentors, provides
opportunities for objective feedback from varied perspectives, and exposes novices to the diversity of
users, software, tools, and approaches available.

Regarding the other barriers discussed, the authors stress that a wide diversity of situations exists, and
that not all of the recommendations provided below will be accessible, timely, and practical in every
case. Instead, these items are meant as guidelines to introduce readers to a variety of approaches
and actions that may improve the graduate student and (or) supervisor experience and contribute
to the general advancement of OSS use in academia.

Recommendations for graduate students
Success in graduate school critically depends on maintaining motivation. Thus, graduate students
must balance recognizing their limitations, identifying the knowledge and resource gaps they need
to fill, and acknowledging their progress. To encourage a productive and motivating environment
for themselves and their peers, graduate students should:

1. Talk to others about what computational skills will likely be required for conducting their
research effectively and how long it will take to acquire those skills. Importantly, this includes
communicating with senior graduate students who are likely to have recent experiences and

Cereceda and Quinn

FACETS | 2020 | 5: 289–303 | DOI: 10.1139/facets-2019-0020 296
facetsjournal.com

FA
C

E
T

S
D

ow
nl

oa
de

d
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y
18

.1
18

.3
7.

24
0

on
 0

5/
18

/2
4

http://dx.doi.org/10.1139/facets-2019-0020
http://www.facetsjournal.com

fresh insight. In some situations, graduate students may need to pitch the value of OSS to their
supervisors or administrators, and providing real-world examples of how others are applying
these skills to their research or career can be an effective approach.

2. Create a plan, including a learning strategy, a set of expectations, and a list of tasks to complete.
Consider the extra time to develop (or learn how to use) tools and code and consider other
technical difficulties when defining specific goals. Discuss the plan with peers or supervisor(s)
and adjust it as needed to maintain a steady learning process. Concentrate on one task at a time
if possible. A good starting point for this process is to identify and discuss the computational
skills required for conducting their research and existing gaps in a student’s knowledge as a
way of framing the next steps of the learning process.

3. Ask for help when needed; seek out knowledgeable local and online resources that can provide
feedback from the context of a project and as a fresh perspective.

4. Help build local communities by promoting the use of OSS and sharing existing open-source
projects that may benefit other research teams. This may include introducing community-
developed resources such as The Carpentries curricula through local networks and sharing their
own code as a resource to novices.

5. Form or join local discussion groups on or off campus; individuals from a similar background
and at similar career stages will likely comprise a student-led study group, making them well
equipped to provide effective and timely support in a group setting because they unite in their
problem solving processes and likely share similar language (Webb 1989). More diverse local
resources such as programming clubs or hackathon events introduce a wide range of knowledge
and experiences from which students can learn and benefit.

6. Follow the software community on social media to stay up-to-date with new software releases,
updates, discussions, and interesting applications of OSS and create a direct contact with the on-
line community. Students can strengthen and maintain these connections by contributing to
ongoing discussions, assisting with tasks such as documentation, and sharing components of
their own work or coding exercises publicly. These communities make valuable resources acces-
sible to new users through groups like The Carpentries, R-Ladies, and Pearl Monks (Carey and
Papin 2018).

7. Validate code by asking for feedback from peers and external researchers, and encourage other
students to do the same by demonstrating the significance of OSS in research and academia.
Submitting code for review to a software journal will not only consolidate it, but also contribute
to the discipline as a scientific contribution.

8. Encourage informal or formal mentoring by pursuing opportunities to connect with experts
outside of the primary research team and act as a mentor for junior graduate students. If
possible, consider external programs such as Google Summer of Code to gain OSS experience
and skills in a more formal setting (Google 2019c).

Recommendations for supervisors
Supervisors represent the primary resource for guidance and mentorship for graduate students and
can potentially greatly influence their skills, knowledge, and attitude toward OSS. To help students
avoid or overcome barriers to OSS, supervisors should:

1. Stay up-to-date on current and available computational tools by attending seminars and
workshops and keep an open mind to changing computational approaches.

2. Acknowledge the limitations of their personal expertise; ask administrators to provide appropri-
ate training opportunities to faculty and (or) identify alternative resources for their students
where necessary.

3. Demonstrate and instil a growth mindset among graduate students and colleagues through
encouragement, praise, and error-framing.

Cereceda and Quinn

FACETS | 2020 | 5: 289–303 | DOI: 10.1139/facets-2019-0020 297
facetsjournal.com

FA
C

E
T

S
D

ow
nl

oa
de

d
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y
18

.1
18

.3
7.

24
0

on
 0

5/
18

/2
4

http://dx.doi.org/10.1139/facets-2019-0020
http://www.facetsjournal.com

4. Help students connect with a variety of resources to continue to develop their skill sets,
including through peers, local groups, technical resources (tutorials and text books), and online
communities.

5. Encourage interdisciplinary collaboration (e.g., organize seminars at the same institution within
similar fields but different backgrounds), and discuss the importance of transferable skills and
diverse perspectives in the context of computational research.

6. Demonstrate the importance of contributing to OSS by being an active community member and
help students to get involved in local or online projects. Praise students for their software
contributions and discuss the short- and long-term benefits of this work to their research and
future career.

7. Encourage students to publish code, technical documentation, software, and software
articles, defend these contributions as research contributions, and discuss how to reward or
appropriately recognize these products.

Recommendations for administrators
Administrators can provide resources, prioritize institutional objectives, and influence academic
culture. To support students and faculty interacting with OSS in their research, administrators should:

1. Regularly survey the needs of graduate students by evaluating their current research projects,
asking for feedback, and considering short- and long-term changes to curricula that will help
fulfill these needs.

2. Explore ways to integrate necessary skill development activities in the graduate school timeline,
including seminar series, additional or modified coursework requirements, or analytical work-
shops. Facilitate the students’ participation including time and funding allowances as needed.

3. Cultivate long-term expertise by motivating training opportunities for faculty and staff;
incentivize participation and recognize local OSS ambassadors, mentors, and contributors.

4. Support the operation and sustainability of centralized resources on campus and encourage
their use. These resources should address gaps in research skills, offer a platform for sharing
knowledge, and be available on official online platforms as well as include an in-person compo-
nent. This need also includes hardware and software resources for students to interact with the
platforms they need to effectively conduct research.

5. Support the local OSS community by integrating graduate students, faculty, and other
researchers.

6. Offer students and faculty guidance on the process and systems around publishing software, and
encourage them to collaborate on OSS projects in addition to more traditional means of
contributing to research.

Recommendations for members of the OSS community
As noted by the Open Source Initiative (2007a), “OSS and other collaborative projects benefit
through, and because of, community”. OSS community members can play an important role in
supporting and mentoring new collaborators, including graduate students. When working with
graduate students, OSS community members should:

1. Reach out to the academic community and encourage students to work with and contribute to
OSS by highlighting how they can benefit from OSS to reach research and long-term career
goals.

2. Continue to improve traditional and nontraditional documentation efforts, such as sensible
error messages, to assist novice users with troubleshooting and code testing.

Cereceda and Quinn

FACETS | 2020 | 5: 289–303 | DOI: 10.1139/facets-2019-0020 298
facetsjournal.com

FA
C

E
T

S
D

ow
nl

oa
de

d
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y
18

.1
18

.3
7.

24
0

on
 0

5/
18

/2
4

http://dx.doi.org/10.1139/facets-2019-0020
http://www.facetsjournal.com

3. Structure online discussions from low to high complexity to make the content more accessible
to all users. Provide solutions along with their explanation when answering online questions
and encourage all users to follow that practice.

4. Help develop and support platforms where students can publish their code and software and be
cited appropriately. These platforms should include resources around feedback, licensing, and
citation processes.

5. Offer newcomers constructive feedback about the applicability and implementation of their
code and other contributions.

6. Take on mentorship roles by being approachable, supportive, and accessible. Demonstrate and
share best practices of interacting with OSS and the OSS community and promote knowledge
transfer in the form of blogs, discussions, and meetups.

Conclusions
OSS offers an important tool for conducting and producing research in both academia and industry.
Graduate students represent an impactful group that can potentially contribute in multiple ways.
However, in the context of OSS, graduate students often face challenging barriers that delay or reduce
the transferability of their scientific contributions.

This manuscript framed the problem of developing software and conducting research in graduate
school, a hurdle often missed by the scientific community. The barriers are not confined to the coding
learning process; students also must abstract the application, develop software tools, and validate their
work. From a graduate student’s perspective, psychological, cultural and practical barriers include
insufficient documentation, disconnection from the OSS online community, and a lack of awareness
of the resources. Despite discouraging barriers that may lead a student to quit, a team effort can turn
around a poor situation. Considering barriers faced by many graduate students, the recommended
practices listed above for each member in the academic and OSS community to implement and help
the graduate student experience creates a positive culture. Increased communication with and
exposure to the OSS community will help graduate students recognize the value of their efforts and
contribute to OSS at different levels.

On a positive note, many now recognize the general challenges around OSS, and freely available
resources can help. However, the resources per se have costs because they are maintained voluntarily
by a group of developers and maintainers with no other interest than maintain useful software. As
heavy users of OSS, graduate students represent a perfect fit for the long-term sustainability of OSS,
which is currently at risk. Technology catalyzes changes in academia and simultaneously, the OSS
community now demands changes in how others understand OSS. This relationship can be improved
through graduate student contributions, noting the key role of students in OSS, academia, and
research. The barriers, although sometimes disheartening, can be overcome and doing so should be
considered as a means for a more important end: the continuance of OSS ecosystems.

Author contributions
OC and DEAQ conceived and designed the study. OC and DEAQ contributed resources. OC and
DEAQ drafted or revised the manuscript.

Competing interests
The authors have declared that no competing interests exist.

Cereceda and Quinn

FACETS | 2020 | 5: 289–303 | DOI: 10.1139/facets-2019-0020 299
facetsjournal.com

FA
C

E
T

S
D

ow
nl

oa
de

d
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y
18

.1
18

.3
7.

24
0

on
 0

5/
18

/2
4

http://dx.doi.org/10.1139/facets-2019-0020
http://www.facetsjournal.com

Data availability statement
All relevant data are within the paper.

References
Alharbi H, and Jacobsen M. 2016. Educational development for quality graduate supervision. Papers
on Postsecondary Learning and Teaching, 1: 41–46.

Amazon. 2019a. AWS Open Source (@AWSOpen) [online]: Available from twitter.com/awsopen.

Amazon. 2019b. Open Source at Amazon [online]: Available from amzn.github.io/.

Bacharakas C. 2018. Cracking the Code—how Mozilla is helping university students contribute to
Open Source. Medium [online]: Available from medium.com/mozilla-open-innovation/cracking-
the-code-how-mozilla-is-helping-university-students-contribute-to-open-source-25fa630d8c5c.

Baker M. 2017. Scientific computing: code alert. Nature, 541(7638): 563–565. DOI: 10.1038/nj7638-
563a

Barnes N. 2010. Publish your computer code: it is good enough. Nature, 467(7317): 753. PMID:
20944687 DOI: 10.1038/467753a

Barone L, Williams J, and Micklos D. 2017. Unmet needs for analyzing biological big data: a survey of
704 NSF principal investigators. PLoS Computational Biology, 13(10): e1005755. PMID: 29049281
DOI: 10.1371/journal.pcbi.1005755

Bowlick FJ, Goldberg DW, and Bednarz SW. 2017. Computer science and programming courses in
geography departments in the United States. The Professional Geographer, 69(1): 138–150. DOI:
10.1080/00330124.2016.1184984

Brown AW, Kaiser KA, and Allison DB. 2018. Issues with data and analyses: errors, underlying
themes, and potential solutions. Proceedings of the National Academy of Sciences of the USA,
115(11): 2563–2570. PMID: 29531079 DOI: 10.1073/pnas.1708279115

Burning Glass Technologies. 2016. Beyond point and click: the expanding demand for coding skills
[online]: Available from academy.oracle.com/pages/Beyond_Point_Click_final.pdf.

Carey MA, and Papin JA. 2018. Ten simple rules for biologists learning to program. PLoS
Computational Biology, 14(1): e1005871. PMID: 29300745 DOI: 10.1371/journal.pcbi.1005871

Cutts Q, Cutts E, Draper S, O’Donnell P, and Saffrey P. 2010. Manipulating mindset to positively
influence introductory programming performance. In Proceedings of the 41st ACM Technical
Symposium on Computer Science Education. ACM, New York, New York. pp. 431–435. DOI:
10.1145/1734263.1734409

Daisyme P. 2019. Should entrepreneurs know programming basics? Due [online]: Available from
due.com/blog/should-entrepreneurs-know-programming-basics/.

Dreyfuss E. 2017. Want to make it as a biologist? Better learn to code. Wired [online]: Available from
wired.com/2017/03/biologists-teaching-code-survive/.

Dunning D. 2011. The Dunning-Kruger Effect: on being ignorant of one’s own ignorance. Advances
in Experimental Social Psychology, 44: 247–296. DOI: 10.1016/B978-0-12-385522-0.00005-6

Cereceda and Quinn

FACETS | 2020 | 5: 289–303 | DOI: 10.1139/facets-2019-0020 300
facetsjournal.com

FA
C

E
T

S
D

ow
nl

oa
de

d
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y
18

.1
18

.3
7.

24
0

on
 0

5/
18

/2
4

https://twitter.com/awsopen
https://amzn.github.io/
https://medium.com/mozilla-open-innovation/cracking-the-code-how-mozilla-is-helping-university-students-contribute-to-open-source-25fa630d8c5c
https://medium.com/mozilla-open-innovation/cracking-the-code-how-mozilla-is-helping-university-students-contribute-to-open-source-25fa630d8c5c
http://dx.doi.org/10.1038/nj7638-563a
http://dx.doi.org/10.1038/nj7638-563a
http://www.ncbi.nlm.nih.gov/pubmed/20944687
http://dx.doi.org/10.1038/467753a
http://www.ncbi.nlm.nih.gov/pubmed/29049281
http://dx.doi.org/10.1371/journal.pcbi.1005755
http://dx.doi.org/10.1080/00330124.2016.1184984
http://www.ncbi.nlm.nih.gov/pubmed/29531079
http://dx.doi.org/10.1073/pnas.1708279115
https://academy.oracle.com/pages/Beyond_Point_Click_final.pdf
http://www.ncbi.nlm.nih.gov/pubmed/29300745
http://dx.doi.org/10.1371/journal.pcbi.1005871
http://dx.doi.org/10.1145/1734263.1734409
https://due.com/blog/should-entrepreneurs-know-programming-basics/
http://www.wired.com/2017/03/biologists-teaching-code-survive/
http://dx.doi.org/10.1016/B978-0-12-385522-0.00005-6
http://dx.doi.org/10.1139/facets-2019-0020
http://www.facetsjournal.com

Dweck CS. 2007. The perils and promises of praise. Educational Leadership, 65(2): 34–39.

Flombaum A. 2017. Is it true that programming is not for everyone? Posted to: Quora [online]:
Available from quora.com/Is-it-true-that-programming-is-not-for-everyone.

Geiger RS, Varoquaux N, Mezel-Cabasse C, and Holdgraf C. 2018. The types, roles, and practices of
documentation in data analytics open source software libraries. Computer Supported Cooperative
Work (CSCW), 27(3–6): 767–802. DOI: 10.1007/s10606-018-9333-1

Ghosh SS, Klein A, Avants B, and Milman KJ. 2012. Learning from open source software projects to
improve scientific review. Frontiers in Computational Neuroscience, 6(18): 1–18. PMID: 22529798
DOI: 10.3389/fncom.2012.00018

Google. 2019a. Google GitHub [online]: Available from github.com/google.

Google. 2019b. Google open source [online]: Available from opensource.google.com/.

Google. 2019c. Google summer of code [online]: Available from summerofcode.withgoogle.com/.

Hecht L, and Clark L. 2018. Survey: open source programs are a best practice among large companies.
The New Stack [online]: Available from thenewstack.io/survey-open-source-programs-are-a-best-
practice-among-large-companies.

Hey T, and Payne MC. 2015. Open science decoded. Nature Physics, 11(5): 367–369. DOI: 10.1038/
nphys3313

Jiménez RC, Kuzak M, Alhamdoosh M, Barker M, Batut B, Borg M, et al. 2017. Four simple recom-
mendations to encourage best practices in research software. F1000Research, 6: 876. PMID:
28751965 DOI: 10.12688/f1000research.11407.1

Katz DS, McInnes LC, Bernholdt DE, Mayes AC, Hong NPC, Duckles J, et al. 2018. Community
organizations: changing the culture in which research software is developed and sustained.
arXiv:1811.08473v2. DOI: 10.1109/MCSE.2018.2883051

Kusanagi M. 2016. How quickly can a person with no coding ability expect to learn enough to get
work coding? Posted to: Quora [online]: Available from quora.com/How-quickly-can-a-person-
with-no-coding-ability-expect-to-learn-enough-to-get-work-coding.

Learner J, Pathak PA, and Tirole J. 2006. The dynamics of open-source contributors. American
Economic Review, 96(2): 114–118. DOI: 10.1257/000282806777211874

List M, Ebert P, and Albrecht F. 2017. Ten simple rules for developing usable software in computa-
tional biology. PLoS Computational Biology, 13(1): e1005265. PMID: 28056032 DOI: 10.1371/
journal.pcbi.1005265

Magana AJ, Taleyarkhan M, Reivera Alvarado D, Kane M, Springer J, and Chase K. 2014. A survey of
scholarly literature describing the field of bioinformatics education and bioinformatics educational
research. CBE—Life Sciences Education, 13: 607–623. PMID: 25452484 DOI: 10.1187/cbe.13-10-0193

Martín-Martín A, Orduna-Malea E, and Delgado López-Cózar E. 2018. Author-level metrics in the
new academic profile platforms: the online behaviour of the bibliometrics community. Journal of
Informetrics, 12(2): 494–509. DOI: 10.1016/j.joi.2018.04.001

Cereceda and Quinn

FACETS | 2020 | 5: 289–303 | DOI: 10.1139/facets-2019-0020 301
facetsjournal.com

FA
C

E
T

S
D

ow
nl

oa
de

d
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y
18

.1
18

.3
7.

24
0

on
 0

5/
18

/2
4

https://www.quora.com/Is-it-true-that-programming-is-not-for-everyone
http://dx.doi.org/10.1007/s10606-018-9333-1
http://www.ncbi.nlm.nih.gov/pubmed/22529798
http://dx.doi.org/10.3389/fncom.2012.00018
https://github.com/google
https://opensource.google.com/
https://summerofcode.withgoogle.com/
https://thenewstack.io/survey-open-source-programs-are-a-best-practice-among-large-companies
https://thenewstack.io/survey-open-source-programs-are-a-best-practice-among-large-companies
http://dx.doi.org/10.1038/nphys3313
http://dx.doi.org/10.1038/nphys3313
http://www.ncbi.nlm.nih.gov/pubmed/28751965
http://dx.doi.org/10.12688/f1000research.11407.1
http://dx.doi.org/10.1109/MCSE.2018.2883051
https://www.quora.com/How-quickly-can-a-person-with-no-coding-ability-expect-to-learn-enough-to-get-work-coding
https://www.quora.com/How-quickly-can-a-person-with-no-coding-ability-expect-to-learn-enough-to-get-work-coding
http://dx.doi.org/10.1257/000282806777211874
http://www.ncbi.nlm.nih.gov/pubmed/28056032
http://dx.doi.org/10.1371/journal.pcbi.1005265
http://dx.doi.org/10.1371/journal.pcbi.1005265
http://www.ncbi.nlm.nih.gov/pubmed/25452484
http://dx.doi.org/10.1187/cbe.13-10-0193
http://dx.doi.org/10.1016/j.joi.2018.04.001
http://dx.doi.org/10.1139/facets-2019-0020
http://www.facetsjournal.com

Mendez C, Padala HS, Steine-Hanson Z, Hilderbrand C, Horvath A, Hill C, et al. 2018. Open source
barriers to entry, revisited: a sociotechnical perspective. In ICSE ’18: Proceedings of the 40th
International Conference on Software Engineering. pp. 1004–1015. DOI: 10.1145/3180155.3180241

Microsoft. 2019a. Microsoft open source [online]: Available from opensource.microsoft.com/.

Microsoft. 2019b. Microsoft open source blog [online]: Available from cloudblogs.microsoft.com/
opensource/.

Murphy L, and Thomas L. 2008. Dangers of a fixed mindset: implications of self-theories research for
computer science education. In Proceedings of the 13th Annual Conference on Innovation and
Technology in Computer Science Education. pp. 271–275. DOI: 10.1145/1597849.1384344

Nangia U, and Katz DS. 2017. Surveying the US National Postdoctoral Association regarding software
use and training in research. In Workshop on Sustainable Software for Science: Practice and
Experiences. DOI: 10.6084/m9.figshare.5328442

Nowogrodzki A. 2019. How to support open-source software and stay sane. Nature, 571: 133–134.
PMID: 31263262 DOI: 10.1038/d41586-019-02046-0

Open Source Initiative. 2007a. Community and collaboration [online]: Available from
opensource.org/community.

Open Source Initiative. 2007b. The open source definition [online]: Available from opensource.org/
osd.

Prabhu P, Jablin TB, Raman A, Zhang Y, Huang J, Kim H, et al. 2011. A survey of the practice of com-
putational science. SC ’11: State of the Practice Reports No. 19. pp. 1–12. DOI: 10.1145/
2063348.2063374

Pratt C. 2017. Programming is not for everyone [online]: Available from cpratt.co/programming-is-
not-for-everyone/.

Ravi S, Pang B, Rastogi V, and Kumar R. 2014. Great question! Question quality in community Q&A.
In Proceedings of the Eighth International Association for the Advancement of Artificial Intelligence
Conference on Web and Social Media [online]: Available from aaai.org/ocs/index.php/ICWSM/
ICWSM14/paper/view/8080.

Red Hat. 2019. Creating better technology with open source [online]: Available from redhat.com/en/
about/open-source#.

Rodrigo MMT, Baker RS, Jadud MC, Ammarra ACM, Dy T, Espejo-Lahoz MBV, et al. 2009. Affective
and behavioral predictors of novice programmer achievement. In ITiCSE ’09: Proceedings of the 14th
Annual ACM SIGCSE Conference on Innovation and Technology in Computer Science Education.
Vol. 41, No. 3, pp. 156–160. DOI: 10.1145/1595496.1562929

Schweik CM. 2004. The open-source paradigm and the production of scientific information: a future
vision and implications for developing countries. In Open access and the public domain in digital data
and information for science: Proceedings of an International Symposium.

Smith AM, Niemeyer KE, Katz DS, Barba LA, Githinji G, Gymrek M, et al. 2018. Journal of Open
Source Software (JOSS): design and first-year review. PeerJ Computer Science, 4: e147. DOI:
10.7717/peerj-cs.147

Cereceda and Quinn

FACETS | 2020 | 5: 289–303 | DOI: 10.1139/facets-2019-0020 302
facetsjournal.com

FA
C

E
T

S
D

ow
nl

oa
de

d
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y
18

.1
18

.3
7.

24
0

on
 0

5/
18

/2
4

http://dx.doi.org/10.1145/3180155.3180241
https://opensource.microsoft.com/
https://cloudblogs.microsoft.com/opensource/
https://cloudblogs.microsoft.com/opensource/
http://dx.doi.org/10.1145/1597849.1384344
http://dx.doi.org/10.6084/m9.figshare.5328442
http://www.ncbi.nlm.nih.gov/pubmed/31263262
http://dx.doi.org/10.1038/d41586-019-02046-0
https://opensource.org/community
https://opensource.org/osd
https://opensource.org/osd
http://dx.doi.org/10.1145/2063348.2063374
http://dx.doi.org/10.1145/2063348.2063374
https://cpratt.co/programming-is-not-for-everyone/
https://cpratt.co/programming-is-not-for-everyone/
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8080
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8080
https://www.redhat.com/en/about/open-source#
https://www.redhat.com/en/about/open-source#
http://dx.doi.org/10.1145/1595496.1562929
http://dx.doi.org/10.7717/peerj-cs.147
http://dx.doi.org/10.1139/facets-2019-0020
http://www.facetsjournal.com

Stamelos IG. 2011. Teaching software engineering with free/libre open source projects. In Multi-
disciplinary advancement in open source software and processes. Edited by S Koch. IGI Global,
Hershey, Pennsylvania. pp. 67–85. DOI: 10.4018/978-1-60960-513-1.ch005

Steele SJ, and Quinn DM. 1999. Stereotype threat and women’s math performance. Journal of
Experimental Social Psychology, 35: 4–28. DOI: 10.1006/jesp.1998.1373

Steinmacher I, Silva MAG, Gerosa MA, and Redmiles DF. 2015. A systematic literature review on the
barriers faced by newcomers to open source software projects. Information and Software Technology,
59: 67–85. DOI: 10.1016/j.infsof.2014.11.001

Sweller J, Ayres P, and Kalyuga S. 2011. Intrinsic and extraneous cognitive load. In Cognitive load
theory. Edited by J Sweller, P Ayres, and S Kalyuga. Springer, New York, New York. pp. 57–69.
DOI: 10.1007/978-1-4419-8126-4

Tan TW, Lim SJ, Khan AM, and Ranganathan S. 2009. A proposed minimum skill set for university
graduates to meet the informatics needs and challenges of the “-omics” era. BMC Genomics,
10(Suppl. 3): S36. PMID: 19958501 DOI: 10.1186/1471-2164-10-S3-S36

Teles dos Santos M, Vianna AS Jr, and Le Roux GAC. 2018. Programming skills in the industry 4.0:
are chemical engineering students able to face new problems? Education for Chemical Engineers,
22: 69–76. DOI: 10.1016/j.ece.2018.01.002

Touchon JC, and McCoy MW. 2016. The mismatch between current statistical practice and doctoral
training in ecology. Ecosphere, 7(8): e01394. DOI: 10.1002/ecs2.1394

Vaughan-Nichols SJ. 2014. It takes an open-source village to make commercial software. ZDNet
[online]: Available from zdnet.com/article/it-takes-an-open-source-village-to-make-commercial-
software/.

Webb NM. 1989. Peer interaction and learning in small groups. International Journal of Educational
Research, 13(1): 21–39. DOI: 10.1016/0883-0355(89)90014-1

Wilson G, Aruliah DA, Brown CT, Hong NPC, Davis M, Guy RT, et al. 2014. Best practices for scien-
tific computing. PLoS Biology, 12(1): e1001745. PMID: 24415924 DOI: 10.1371/journal.pbio.1001745

Cereceda and Quinn

FACETS | 2020 | 5: 289–303 | DOI: 10.1139/facets-2019-0020 303
facetsjournal.com

FA
C

E
T

S
D

ow
nl

oa
de

d
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y
18

.1
18

.3
7.

24
0

on
 0

5/
18

/2
4

http://dx.doi.org/10.4018/978-1-60960-513-1.ch005
http://dx.doi.org/10.1006/jesp.1998.1373
http://dx.doi.org/10.1016/j.infsof.2014.11.001
http://dx.doi.org/10.1007/978-1-4419-8126-4
http://www.ncbi.nlm.nih.gov/pubmed/19958501
http://dx.doi.org/10.1186/1471-2164-10-S3-S36
http://dx.doi.org/10.1016/j.ece.2018.01.002
http://dx.doi.org/10.1002/ecs2.1394
https://www.zdnet.com/article/it-takes-an-open-source-village-to-make-commercial-software/
https://www.zdnet.com/article/it-takes-an-open-source-village-to-make-commercial-software/
http://dx.doi.org/10.1016/0883-0355(89)90014-1
http://www.ncbi.nlm.nih.gov/pubmed/24415924
http://dx.doi.org/10.1371/journal.pbio.1001745
http://dx.doi.org/10.1139/facets-2019-0020
http://www.facetsjournal.com

	A graduate student perspective on overcoming barriers to interacting with open-source software
	Introduction
	Motivation, context, and scope

	Barriers to learning computational skills
	Inconsistencies in training
	Skill assessment
	Cognitive obstacles
	Knowledge constraints
	Seeking help

	Barriers to contributing to OSS
	Cultural obstacles
	Other constraints

	Recommendations
	Recommendations for graduate students
	Recommendations for supervisors
	Recommendations for administrators
	Recommendations for members of the OSS community

	Conclusions
	Author contributions
	Competing interests
	Data availability statement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

