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Abstract
This short communication focuses on exploiting the inherent advantages of discrete wavelet transfor-
mation (DWT) as a diagnostic tool for post-processing and for identifying the faults that occur in the
standard high-voltage direct-current (HVDC) transmission network. In particular, a set of investiga-
tions are developed and examined for single-line-to-ground fault on the generation and on the load side
converter, and DC-link fault. For this purpose, a standard 12-pulse line-commutated converter
(LCC)-HVDC transmission network along with the DWT algorithm is numerically modeled in the
MATLAB/PLECS simulation software. Furthermore, in this paper, a set of designed faulty conditions are
predicted using the output of DWT and the results of numerical simulation are presented. Results are
in good agreement with expectations to prove that DWT is an effective tool for fault diagnostics.

Key words: discrete wavelet transformation, fault analysis, fault classification, fault detection,
line-commutated converter, high-voltage direct current

Introduction
In recent years, a 12-pulse voltage-source converter based on high-voltage direct current (HVDC)
transmission network has been widely implemented in real time, because of its outstanding advan-
tages, such as economical efficiency and flexibility. Moreover, HVDC transmission systems that uti-
lize the line-commutated converter (LCC) are successful and have been running for many years
(Wang and Sa-Nguyen et al. 2014; Sanjeevikumar et al. 2014). However, on the point of safety, the
operation of HVDC systems is essential for both monitoring and better protection. Many research
articles have addressed various fault diagnostic postprocessing tools including artificial neural net-
works, fuzzy control, and other intelligent systems (Nanayakkara 2011, 2012; Mohagheghi et al.
2009). However, under high-power transmission conditions or produced complex strategies, they
do not effectively find the fault that has actually occurred. Discrete wavelet transformation (DWT)
has found wider applications recently for controlling the AC/DC drives and motors with major ben-
efits and is discussed in detail by Saleh (2013), Hui et al. (2015), Febin Daya et al. (2013a, 2013b, 2015,
2016), and Sanjeevikumar et al. (2015a, 2015b, 2015c). Furthermore, wavelet transforms are applied
in the field of HVDC transmission for diagnosis of fault location, analysis, and DC-link failure, but
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a systematic and comprehensive investigation of types of fault identification has not been presented
(De Kerf et al. 2011; Yeap and Ukil 2014; de Andrade and Ponce de Leao 2014) and moreover that
is not robust to adaptations. DWT is the fast processing algorithm and its inherent capabilities
are exploited as a fault diagnostic tool in this paper. A set of three drastic faulty conditions are devel-
oped for a 12-pulse LCC-HVDC transmission system as a preliminary investigation to verify the
proposal—specifically, single-line-to-ground, on generation and on load end converters, and DC-link
faults. The complete AC power system is numerically developed in the MATLAB/PLECS simulation
software. The observed results presented in this paper show that DWT accurately predicts the types
of developed fault conditions under all conditions, as expected.

Discrete wavelet transform for a 12-pulse LCC-HVDC
power system
Figure 1 shows the schematic circuit of the standard 12-pulse LCC-HVDC transmission system in
practice. The well-known synchronous reference frame regulation scheme is employed to control
the 12-pulse rectifier and 12-pulse inverter units to perform effectively in the available power transfer
from generation to the load center (Sanjeevikumar et al. 2014). A set of three fault conditions are
designed as a preliminary task to examine the most common and drastic issues in transmission net-
works—single-line-to-ground, on generation and on the load side converters, and most important
DC-link faults. Furthermore, the research work is kept under study for investigation of types of fault
identification and its detailed analysis as near future implementations.

In this analysis, the DWT plays the role of identifying about the set of faults under test and confirms
the type of occurrences in the complete system. The input parameter is chosen as power, as it includes
the characteristic variation in voltages and currents and adheres to be a simplified solution. The
instantaneous power is calculated and fed as input to DWT, which begins processing when a
discrete signal x[n] of length N is transmitted. DWT can easily distinguish between the instantaneous
power into high-pass signal resulting in an impulse response h[n] and that into a low-pass signal
resulting in an impulse g[n], mathematically expressed as follows (Saleh 2013; Hui et al. 2015; Febin
Daya et al. 2013a, 2013b, 2015, 2016; Sanjeevikumar et al. 2015a, 2015b, 2015c; Mallat 1989):

d1½n� =
XN−1

k=0

x½k�h½n − k�; a1½n� =
XN−1

k=0

x½k�g½n − k� (1)

Fig. 1. Schematic circuit of the standard 12-pulse LCC-HVDC transmission network under postprocessing for the fault identification
test bench.
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where d1[n] and a1[n] are the outputs of the high- and low-pass filters, respectively. After this process-
ing, again the output from the low-pass filter is down-sampled by two and passed through a low-
and a high-pass filter, which resembles the ones in the first level, written as follows (second level of
decomposition):

d2½n� =
XN=2−1

k=0

a1½k�h½n − k�; a2½n� =
XN=2−1

k=0

a1½k�g½n − k� (2)

To be noted, several types of wavelet filters are available and have been investigated, but the minimum
description length (MDL) is chosen as the best criterion and is mathematically represented as
follows (Febin Daya et al. 2013a, 2013b, 2015, 2016; Sanjeevikumar et al. 2015a, 2015b, 2015c;
Mallat 1989):

MDLðk,nÞ =min

�
3
2
k log N þ N

2
log kα̃n − αðkÞn k2

�
, 0 < k < N ; 1 ≤ n ≤ M (3)

where α̃n =Wnf denotes a vector of the wavelet transformed coefficients of the signal f using wavelet
filters (n). αðkÞn =∅K α̃n =∅KðWnf Þ denotes a vector that contains k nonzero elements. The threshold
parameter ∅K keeps k number of the largest elements of the vector α̃n constant and sets all other ele-
ments to zero. N andM denote the length of the signal and the number of wavelet filters, respectively.
The entropy H(x) of a signal x[n] of length N is defined by

HðxÞ = −
XN−1

n=0

jxðnÞj2 log jxðnÞj2 (4)

For determining the optimal levels of decomposition, the entropy is evaluated at each level. For a new
level j, the entropy works as the following constraint:

HðxÞj ≥ HðxÞj−1 (5)

A two-level decomposition method is sufficient for the effective representation of HVDC transmis-
sion system identifying the type of fault. The components (low- and high-frequency components)
were scaled by their respective gains and then added together to generate the control signal u:

u = kd1ed1 þ kd2ed2þ · · · þkdN edN þ kaN eaN (6)

where gains kd
1, kd

2, : : : , kd
N are used to tune the high- and medium-frequency components

of the fault (instantaneous power) signal (ed1, ed2, : : : , edN). Gain ka
N is used to tune the low-

frequency components of the fault signal (eaN) under test and N is the number of decomposition
levels.

Numerical simulation results and discussion
For numerical verifications the following parameters are considered and fault occurrences
are numerically designed with time intervals as described in Table 1. The DC transmission line length
equals 300 km, and the AC generator was rated at 5000 MVA at 60 Hz, and load end utility of 500 kV.
The transformers are rated, the rectifier and inverter ends at 1200 MVA, with grid 345 kV, 50 Hz,
10,000 MVA, and power transmission capacity of 1000 MW.

In the first investigation test, Fig. 2 shows the simulation response when the 12-pulse LCC-HVDC
transmission system is subjected to healthy and single-line-to-ground fault on the generator side by
DWT diagnostic tool behavior. Figure 2a–d depict the three-phase generated voltage, generated
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currents, DC-link voltage, and DC-link current, respectively. From the results it is clear that healthy
condition exists until the time interval 1.6 s, where the designed fault occurs in the transmission sys-
tem, eventually leading voltages and currents to behave abruptly above the set ratings until 1.7 s,
where again it returns back to healthy conditions as designed for investigation. Figure 2e illustrates
the behavior response of fault identification by DWT; it is clearly observed until the healthy condi-
tions output reaches a constant amplitude of 1.7, for all co-efficients of two-level decomposition
according to eq. (6). Once, the designed fault occurs at 1.6 s, the DWT output value increases and
reaches the peak amplitude of 6 and the contour area widens as expected.

From the amplitude of peak and contour areas, it could be easily distinguished that the fault that
occurred is a single-line-to-ground fault on the generator side. Furthermore, DWT returns back to
its initial values once the fault is cleared at 1.7 s (eq. 6), and the contour area also reduces as it appears
in healthy conditions. Hence, by DWT spectrum behavior, the healthy and faulty conditions are
clearly distinguishable when the system is subjected to the disturbance.

The second investigation test is focused on single-line-to-ground fault identification by DWT on the
load end. Figure 3 describes the simulation response, as a 12-pulse LCC-HVDC transmission system
subjected to healthy and single-line-to-ground fault on the load side, and DWT diagnostic tool behav-
ior. Figure 3a–d depict the three-phase generated voltage, generated currents, DC-link voltage, and
DC-link current, respectively. It was clear from the results that healthy conditions exist until the time
6.72 s, where the designed fault occurs in the transmission system, eventually leading the voltages and
currents to behave abruptly as predicted above the set ratings until the time of 6.8 s, where again it
returns back to healthy conditions as designed for investigation. Behavior of fault identification by
DWT is described in Fig. 3e; it is notable until healthy conditions output reaches a constant ampli-
tude of 1.7, all co-efficient of two-level decomposition according to eq. (6). Once, the fault occurs at
6.72 s, the DWT output value increases and reaches the peak of 5.8 in amplitude and the contour area
widens as expected.

Furthermore, the contour area generated by DWT outputs is not similar to the first investigation test
and it is clearly distinguishable. Hence, the amplitude of peak and contour areas shows that the fault
occurred is single-line-to-ground fault on load end. DWT returns back to its initial values once the
fault is cleared at 6.8 s (eq. 6) and the contour area also reduces as it appears in healthy conditions.
Hence, again by DWT spectrum behavior, the healthy and faulty conditions are clearly predictable
when the system subjected to the disturbance.

In the third investigation test, Fig. 4 describes the simulation response, as a 12-pulse LCC-HVDC trans-
mission system subjected to healthy and DC-link fault, and DWT diagnostic tool behavior. Figure 4a–d
depict the three-phase generated voltage, generated currents, DC-link voltage, and DC-link current,
respectively. It is noticed from the results that healthy conditions exist until the time interval 5.44 s,
where the designed fault occurs in the transmission system, eventually leading the voltages
and currents to behave abruptly as predicted above the set ratings until 5.52 s. Figure 4e elaborates

Table 1. Designed criterion for the set of faults.

Type of fault Fault time (s)

SLG fault (generation end) 1.60–1.68

DC-link (HVDC transmission) fault 5.44–5.52

SLG fault (load end) 6.72–6.80

SLG= single-line-to-ground.
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Fig. 2. Numerical simulation response of the
12-pulse LCC-HVDC transmission system subjected
to test includes healthy and generator side single-line-
to-ground fault conditions by the DWT diagnostic
tool. (a) Three-phase line-to-line voltage measured
on the generator side. (b) Three-phase line current
measured on the generator side. (c) DC-link measured
voltage. (d) DC-link measured current. (e) Discrete
wavelet transform response.
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Fig. 3. Numerical simulation response of the 12-
pulse LCC-HVDC transmission system subjected to
test includes healthy and load inverter side single-
line-to-ground fault conditions by the DWT diagnos-
tic tool. (a) Three-phase line-to-line voltage measured
on the generator side. (b) Three-phase line current
measured on the generator side. (c) DC-link measured
voltage. (d) DC-link measured current. (e) Discrete
wavelet transform response.

Sanjeevikumar and Blaabjerg

FACETS | 2016 | 1: 17–26 | DOI: 10.1139/facets-2015-0005 22
facetsjournal.com

FA
C

E
T

S 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y 
18

.2
17

.7
1.

21
7 

on
 0

5/
18

/2
4

http://dx.doi.org/10.1139/facets-2015-0005
http://www.facetsjournal.com


Fig. 4. Numerical simulation response of the 12-pulse
LCC-HVDC transmission system under test subjected
to healthy and DC-link fault conditions by the DWT
diagnostic tool. (a) Three-phase line-to-line voltage
measured on the generator side. (b) Three-phase line
current measured on the generator side. (c) DC-link
measured voltage. (d) DC-link measured current.
(e) Discrete wavelet transform response.
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the behavior of fault identification by DWT; it is observed until healthy conditions output reaches a
constant amplitude of 1.7, all co-efficient of two-level decomposition according to eq. (6). Once, the
fault occurs at 5.44 s, the DWT output value increases and reaches the peak of 5.8 in amplitude and
the contour area widens as expected. To be noted, that the contour area generated by DWT outputs
is not similar to the first and second investigation tests and it is clearly distinguishable.

Furthermore, it should be noted that once the DC fault occurs at time interval 5.52 s, drastic failure
occurs and the complete system needs to be protected. So, the generator side is open-circuited from
DC link similar to the load side; therefore, the AC generator, rectifier, and inverter on the load side
are protected. However, voltage generated after the time 5.52 s is purely open-circuited (Fig. 4a),
whereas three-phase current on the generator side, DC-link voltage, and DC-link current are null,
which confirms the protection and open-circuited conditions. Hence, the amplitude of peak and con-
tour areas shown by DWT confirm that the fault occurred is DC-link fault on the load end and also
the open-circuit protection state. It is concluded from these three preliminary investigation tests that
DWT is capable of predicting a diagnostic tool when the HVDC transmission system suffers with differ-
ent faults.

Conclusion
This short communication exploited the capabilities of DWT as a postprocessing tool to identify the
fault in a 12-pulse standard LCC-HVDC transmission system. A set of faulty conditions are designed
and numerically implemented using the simulation software (MATLAB/PLECS). A set of observed
results are presented and show good agreement with expectation under healthy and different fault
conditions. Furthermore, the challenging task related to other types of fault and fault occurrences dur-
ing transient conditions and the effect of leakage reactance on faults with sag/swell need to be inves-
tigated and will be addressed in future articles. Moreover, the DWT application can be extended to
other transmission system types such as FACTS devices (STATCOM, SSSC, and UPQC) and active
filters.
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