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Abstract
Ammonium deposition at the International Institute for Sustainable Development Experimental Lakes
Area (IISD–ELA), in northwestern Ontario, Canada, has doubled in the last 45 years and thus is no
longer among the low nitrogen (N) deposition sites in North America. This may be related to the con-
current intensification of Manitoba agriculture to the west and upwind of the ELA. Large increases in
ammonium deposition at the ELA were important in driving the observed trend and increased the
NH4

+ to NO3
− ratio of input to aquatic and terrestrial systems. Stable isotope analyses of two years of

bulk (wet and dry) atmospheric deposition revealed very large ranges in δ15N−NH4
+ (22‰ range),

δ15N−NO3
− (18‰), and δ18O–NO3

− (19‰). Few other δ15N−NH4
+, δ15N−NO3

−, and δ18O–NO3
−

values have been published for Canadian precipitation. Increases in δ15N of NH4
+ and NO3

− in July
occurred with increases in total N deposition. The wide range and seasonal trends of δ15N and δ18O
values in ELA precipitation mean that studies characterizing N inputs to watersheds and lakes require
an ongoing and comprehensive annual sampling regime. Global trends of declining δ15N of N deposi-
tion evident in lake sediment records may be a result of increases in NH4

+ deposition with lower
δ15N−NH4

+ values. Similarly, the relationship in Lake Superior between increasing NO3
− and lower

δ15N−NO3
− values may be explained by increased atmospheric deposition of N with low δ15N values.
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Introduction
Release of nitrogen (N) to the atmosphere has been increasing globally due to greater emissions of N
from human activities (Vitousek et al. 1997; Galloway et al. 2003, 2004). These N emissions react to
form N species that are deposited onto ecosystems hundreds of kilometres from the source (Asman
et al. 1998). Nitrogen deposition is one component in the calculation of critical loads for acid sensitive
lakes and soils (Schulze et al. 1989; Driscoll et al. 2001; Jeffries et al. 2003). Although N is often a limit-
ing element for forest growth, the loss of base cations from soils as a result of oxidized N loading can
compromise forest response to N fertilization. At elevated levels of N deposition, forest productivity
and biomass decrease, whereas emissions of the potent greenhouse gas, nitrous oxide, increase
(Aber et al. 1989; Matson et al. 2002; Venterea et al. 2003). Global N deposition modeling indicates
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that 50–80% of N deposition falls on natural (non-agricultural) areas and N accumulation is driving
changes in terrestrial plant diversity (Dentener et al. 2006; Bobbink et al. 2010).

Natural abundance stable isotope ratios of N and oxygen (O) (15N/14N, hereafter δ15N; similarly
18O/16O, hereafter δ18O) are used to determine the proportion of atmospheric N that is incorporated
into ecosystems and to separate new from old N sources (e.g., Kendall 1998; Mayer et al. 2001;
Spoelstra et al. 2007). Atmospheric processes involving N species have also been inferred from the
observed changes in stable isotope composition of N deposition including temperature (Freyer et al.
1993), NOX source, storm track (Buda and DeWalle 2009), duration of rain event (Buda and
DeWalle 2009), temporal separation from previous rain events (Heaton 1987), halogen chemistry
(Altieri et al. 2013), and atmospheric chemical reactions of NO3

− precursors (Freyer et al. 1993;
Michalski et al. 2012).

There are few studies on atmospheric NO3
− isotopes in Canada (Mayer et al. 2001; Spoelstra 2004;

Spoelstra et al. 2001, 2004, 2007, 2010). Most published δ15N−NO3
− data are from heavily impacted

systems in Europe, the eastern USA, northern Europe, and China (e.g., Hastings et al. 2003; Elliott
et al. 2007, 2009; Zhang et al. 2008; Fang et al. 2011; Koszelnik and Gruca-Rokosz 2013; Korth
et al. 2014; Yang et al. 2014; Guerrieri et al. 2015; Yu et al. 2016). In general, fewer studies with
NH4

+ isotopes in atmospheric deposition are available (e.g., Garten 1992; Zhang et al. 2008).
Recently, Holtgrieve et al. (2011) suggested that by more than doubling the reactive N in the biosphere
and increasing atmospheric CO2 concentration, the δ15N of lake sediment has been altered. Even in
remote areas, the deposition of N species and their associated δ15N values have changed (Dentener
et al. 2006; Knapp et al. 2008, 2010) and lake sediments have recorded a decrease in δ15N over the last
century (Wolfe et al. 2003; Hobbs et al. 2010; Holtgrieve et al. 2011).

Here, we examine trends in N deposition and the stable isotopic values of N species at a site remote
from urban and agricultural activities. The IISD–Experimental Lakes Area (ELA) in northwestern
Ontario, Canada, has been the site of long-term whole-ecosystem research for over 45 years
(Blanchfield et al. 2009). Nitrogen deposition at the ELA is currently less than one third that of the
most impacted sites in eastern North America and Europe (Watmough et al. 2005; Pardo et al.
2011). Our objectives in this paper are to (1) assess annual and open water season changes in the
speciation of atmospheric N deposition at the ELA over 44 years of record; (2) characterize the
seasonal variability in δ15N−NO3

−, δ18O–NO3
−, δ15N−NH4

+, and δ15N–total nitrogen (TN) of
atmospheric deposition at the ELA; and (3) compare these values with dissolved organic matter
(DOM), particulate organic matter (POM), and zooplankton at the base of ELA food webs.

Methods
The ELA is situated on the Canadian Shield in the boreal forest of northwestern Ontario, Canada
(93°41′W 49°41′N; Fig. 1). The ELA climate is continental with cold winters and warm summers.
Average annual precipitation is 707 mm/year (1970–2013). Climate and deposition measurements,
including chemistry, have been made in the Lake 239 catchment since June 1969. In the early 1970s,
N deposition at the ELA was among the lowest recorded in North America; however, this is no longer
the case (Parker et al. 2009). Bulk deposition was collected during the ice-free season at the Lake 239
island from 1969 to 1983 before being moved to the nearby Lake 240 island. There is no evidence
indicating that the change in location affected the data. Precipitation has also been collected at the
ELA Meteorological Station since 1970. Detailed methods are outlined by Beaty (1981) and Linsey
et al. (1987). Briefly, in summer, 0.5 m × 0.5 m plexiglass bulk deposition collectors for wet and dry
deposition screened to 100 μm were emptied after enough water was collected for analyses, filtered,
and stored cold until chemical analyses were performed within a few days. In winter, snow from the
collector was pushed with a clean paddle into a plastic bag and kept frozen until analysis.
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Bulk deposition samples for isotopic analyses were collected at the meteorological site in a collector
from 6 June 2012 to 21 March 2013. Samples from a bulk collector in the Lake 302 catchment, about
3 km away, collected from April to September 1996, were archived frozen (as per Lamontagne and
Schiff 1999) and analysed for this study.

Stream and lake survey samples of DOM, POM, and zooplankton were collected from the epilimnion
of eight lakes (114, 239, 303, 304, 737, 626, 658, and 979) and five streams (water only) at the ELA
(Lake 114 inflow, Lake 114 cliff inflow, Lake 240 inflow from Lake 470, Lake 302 upland 8, and
Lake 979 east inflow) in mid-July 2010 (except Lake 114 inflow samples, which were collected during
the summers of 2000–2002). Water samples were filtered with pre-combusted QMA filters (nominal
pore size of 0.8 μm). Filtrate was acidified with concentrated HCl to pH 4 before being freeze-dried.
Zooplankton were collected by towing a 50 cm diameter net with a 150 μm mesh behind a boat.
Samples were washed and freeze-dried. Both freeze-dried material and filters were analysed for
δ15N on a Carlo Erba 1108 elemental analyser coupled to a Thermo Finnigan Delta+ continuous flow
isotope-ratio mass spectrometer (EA-IRMS).

ELA deposition samples were analysed by standard methods (Stainton et al. 1977). NO2
− was

analysed colorimetrically by the azo dye method on a Technicon Autoanalyzer. NO3
− was

analysed colorimetrically following reduction to NO2
− via a copper-cadmium couple by the azo

dye method on a Technicon Autoanalyzer. NH4
+ was analysed colorimetrically by the indophenol

blue method with nitroprusside catalyst on a Technicon Autoanalyzer. Total dissolved nitrogen
(TDN) was analysed by photo-oxidation of alkaline samples, and the subsequent NO3

− was
reduced to NH4

+ by zinc in acid, then analysed colorimetrically as per NH4
+. Dissolved organic

nitrogen (DON) was calculated as the difference between TDN and the sum of NO3
−, NO2

−,
and NH4

+. Prior to 1989, NO2
− was not reported separately from NO3

− and the values reported

Fig. 1. Map of North America showing the Environmental Lakes area (ELA) study location and nearby sites with
comparable data sets: Turkey Lakes Watershed (TLW) and Lake Superior (LS). Made with Natural Earth (free
vector and raster map data available from www.naturalearthdata.com).
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here for NO3
− include NO2

−. After 1989, we used only the NO3
− values. NO2

− values in bulk
collected deposition are very small, averaging 1.4% of total NO3

− + NO2
− from 1990 to 2013.

NO2
− is included in the TN and TDN analyses in the entire data record. Suspended N was

collected by filtration on a glass fibre filter and analysed on an elemental analyser.

Bulk deposition samples in 2010–2012 were collected at the ELA meteorological site in plastic
bags in about two week intervals. Bags were sealed, kept cold, screened to 150 μm, transferred
to Nalgene bottles, and frozen within 2 d. Samples were kept frozen until analysis. Bulk deposition
samples at the Lake 302 uplands were collected in 1996 on a storm event basis and were treated
similarly.

For isotopic analysis, NO3
− + NO2

− concentrations were determined using a Westco SmartChem 200
discrete analyzer with a method based on USEPA 353.2 Revision 2.0 (1993). NO3

− was reduced to
NO2

− by passage of the sample through a tubular copperized cadmium reactor from which
NO2

− was treated with sulphanilamide and N-(naphthyl)-ethylenediamine dihydrochloride to form
a dye measured colorimetrically at 550 nm. Precision was ±0.02 mgN/L. NH4

+ concentrations were
analysed manually using spectrophotometer on unfiltered samples. NH4

+ was reacted with alkaline
phenol and then hypochlorite-forming indophenol blue, which was intensified by adding sodium
nitroprusside before analysis at 600 nm. Precision was ±0.08 mgN/L.

For δ15N and δ18O–NO3
− analysis, NO3

− + NO2
− was chemically reduced to N2O (McIlvin and

Altabet 2005). Briefly, NO3
− was reduced to NO2

− with cadmium and then NO3
− + NO2

− was
reduced to N2O with NaN3. N2O was analysed with a VG IsoPrime continuous flow isotope-ratio
mass spectrometer with a VG TraceGas pre-concentrator. Analyses were performed in duplicate.
Precisions were ±0.2‰ for δ15N−NO3

− and ±0.5‰ for δ18O–NO3
−.

For δ15N−NH4
+ analysis, NH4

+ was chemically converted to N2O (Zhang et al. 2007). Briefly, NH4
+

was oxidized to NO2
− with BrO− and then reduced to N2O with NaN3. The resulting N2O was ana-

lysed as above in duplicate. Precision was ±0.3‰.

For δ15N–TN analysis, sample volumes were reduced by evaporation from about 2 L to about 100 mL.
Samples were freeze-dried and packed into tin cups for analysis on the EA-IRMS as above. Precision
was ± 0.3‰.

Concentrations and precipitation depths were combined to yield areal deposition rates on an annual
basis and for the open water season of late-April to the end of September (ice-off to thermal destrati-
fication, d 120–273). There are a few external inputs of N to these small headwater lakes other than
atmospheric deposition once they are thermally stratified and after snowmelt. Long-term trends were
assessed with the non-parametric Mann–Kendall test (McLeod 2011) in R (R Core Team 2016).

Results

Historical precipitation and N deposition at the ELA
Annual and open water season precipitation at the ELA varied by a factor of two over the 44 year his-
torical record (Fig. S1). Average annual precipitation was 707 mm (1970–2013) and in 2010–2012,
the years with samples collected for detailed isotopic analyses, precipitation amounts of 955, 660,
and 670 mm were recorded. In the open water season when there is the greatest primary production
(e.g., Fee 1976), average precipitation over 44 years was 453 mm and in 2010–2012, 734, 451, and
356 mm were received. Precipitation was lower in the 1980s than in recent decades and year-to-year
variability was often large. The calendar year and open water season of 2010 were among the 10 wettest
in the ELA record.
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Over the 44 year record, NO3
− deposition at the ELA exhibited no appreciable change, whereas

NH4
+ deposition has increased (Fig. 2 and Tables 1 and 2). The majority of the increase has occurred

since 1980 (Fig. 2). Annual average NH4
+ concentrations increased from 269 μgN/L in the first

10 years to 417 μgN/L in the most recent 10 years (Fig. S2, top). Open water season volume-weighted
TN concentrations remained constant over those intervals, 881 and 947 μgN/L (Fig. S2, bottom).
Increases in NH4

+ deposition were a result of increases in both concentrations and precipitation.
There were weak, but significant, correlations between N deposition and precipitation (all r are
0.20–0.40; all p< 0.05 except TDN).

As a result of increased NH4
+ deposition, the ratio of NH4

+ to NO3
− increased (Fig. 3). The average

ratio of NH4
+ to NO3

− in the first 10 years of the record was 1.1 (1.2 in open water season) and in
the last 10 years it was 1.6 (1.9 in open water season). Suspended N averaged 15% of TN deposition
and was slightly lower in the 1980s.

Concentration of NO3
− and NH4

+ in deposition in 2010–2012
Deposition samples collected for isotopic analyses in 2010 and 2011–2012 represented 90% and 97%,
respectively, of the total precipitation that fell during the sampling period. Non-volume-weighted
NH4

+ concentrations were between 40 and 880 μgN/L (average concentration 325 μgN/L) in 2010
and 2011–2012 and were similar to those of the last 10 years of the record (as above and Table 1).
Non-volume-weighted NO3

− concentrations were between 70 and 490 μgN/L (average concentration
254 μgN/L) and did not vary as much as NH4

+.

Nitrogen and oxygen isotopes in atmospheric deposition
Published δ15N−NO3

− and δ18O–NO3
− values in atmospheric deposition from sites around the

world, including urban, rural, and forested locations, exhibit a very large range: δ15N−NO3
− and

δ18O–NO3
− ranges from −13‰ to +5‰ and +12‰ to +86‰, averaging −3.0‰ ± 3.5‰ and

+65.0‰ ± 15.2‰ (Figs. 4, S3). Values of δ15N−NO3
− at the ELA varied from −12.0‰ to +1.0‰

in 2010–2012, with the lowest δ15N−NO3
− values in spring (Fig. 5). Higher values in summer than

winter were also observed at the Turkey Lakes Watershed (TLW) and around Lake Superior,
Canada (Spoelstra et al. 2001; Spoelstra 2004; Finlay et al. 2007).

Values of δ18O–NO3
− were greatest in winter and lowest in mid-summer (Fig. 5), ranging from

+63‰ to +82‰ in 2010–2012. Both deposition and throughfall from 1996 also exhibit the same sea-
sonal trend (highest values in winter, lowest in mid-summer), as did TLW (Spoelstra 2004),
Huntington Forest in Adirondack Park, New York (Campbell et al. 2006), and mid-Appalachia,
Pennsylvania and West Virginia (Williard et al. 2001).

TLW and the southern shore of Lake Superior are the closest sites to the ELA; TLW data show com-
parable δ15N−NO3

− values but lower δ18O–NO3
− values than the ELA (Spoelstra 2004) or the Lake

Superior sites (Finlay et al. 2007) even though the measurements spanned more than a decade:
2000–2002 at TLW and 2004–2006 at Lake Superior, and 1996 and 2010–2012 at the ELA. Other
more distant North American sites have similarly large ranges in δ15N−NO3

− and δ18O–NO3
− over

the open water season (Williard et al. 2001; Burns and Kendall 2002; Campbell et al. 2006; Barnes
et al. 2008). There were no relationships between NO3

− concentrations and δ15N−NO3
− or

δ18O–NO3
− values (r = −0.25 and 0.09, p = 0.11 and 0.57) at the ELA. Mass-weighted

δ15N−NO3
− and δ18O–NO3

− values for deposition at the ELA for 2010–2012 were −4.4‰ and
+68.4‰, very close to the means of published values at −2.7‰ and +64.3‰.

There are many factors that have been shown to influence the isotopic composition of NO3
− includ-

ing, but not limited to, temperature, UV radiation (Freyer et al. 1993), NOX source, storm track
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Fig. 2. Annual and open water season (OWS) nitrogen deposition at the Experimental Lakes Area for the period
from 1970 to 2013. Grey bands are the 95% confidence intervals around the linear regressions. TDN, total
dissolved nitrogen; SuspN, suspended nitrogen; TN, total nitrogen.

Venkiteswaran et al.

FACETS | 2017 | 2: 249–266 | DOI: 10.1139/facets-2016-0060 254
facetsjournal.com

FA
C

E
T

S 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y 
3.

13
1.

95
.4

9 
on

 0
5/

17
/2

4

http://dx.doi.org/10.1139/facets-2016-0060
http://www.facetsjournal.com


(Buda and DeWalle 2009), duration of rain event (Buda and DeWalle 2009), temporal separation
from previous rain events (Heaton 1987), and atmospheric chemical reactions of NO3

− precursors
(Freyer et al. 1993).

Published δ15N−NH4
+ values average −6.4‰ ± 5.5‰ with a large total range from −21.8‰ to

+5.7‰ (Fig. 5). There are no previously published δ15N−NH4
+ values in Canada. At the ELA,

δ15N−NH4
+ values in 2010–2012 ranged from −20.8‰ to +1.1‰ with a mass-weighted mean of

−7.4‰, lower than for δ15N−NO3
− (−4.4‰). Highest δ15N−NH4

+ values were in the summer
(Fig. 5). The δ15N−NH4

+ values show no relationship with NH4
+ concentration (r = 0.26,

Table 1. Long-term annual means and trends for the period from 1970 to 2013 in N species in bulk
atmospheric deposition at the Environmental Lakes Area (ELA).

Volume-weighted mean
concentration Deposition

Mean Trend p Mean Trend p

Ammonium 364 4.29 <0.001 257 3.72 <0.001

Nitrate 289 −0.436 0.708 201 0.181 0.649

Suspended N 140 −0.267 0.879 99 0.034 0.635

TDN 821 0.784 0.649 572 2.26 0.160

TNa 955 0.624 0.537 668 2.31 0.172

Precipitation — — — 707 1.70 0.347

Note: Concentrations are in mgN/m3, deposition in mgN/m2, trends in mgN/(m3·year) and mgN/
(m2·year), and precipitation in mm/year. p-values from Mann–Kendall trend analysis. Statistically
significant trends (p < 0.05) are identified in italics. TDN, total dissolved nitrogen; TN, total nitrogen;
SuspN, suspended nitrogen.
aTN = SuspN + TDN.

Table 2. Long-term open water season (May to October, inclusive) means and trends for the period from 1970
to 2013 in nitrogen species in bulk atmospheric deposition at the Environmental Lakes Area (ELA).

Volume-weighted mean
concentration Deposition

Mean Trend p Mean Trend p

Ammonium 359 3.74 0.003 161 2.35 <0.01

Nitrate 261 −1.46 0.346 113 −0.124 0.769

Suspended N 177 −0.182 0.511 77 0.421 0.191

TDN 856 −0.507 0.847 375 1.47 0.091

TNa 1043 −1.00 0.472 454 1.83 0.137

Precipitation — — — 453 2.02 0.206

Note: Mean concentrations are in mgN/m3, deposition in mgN/m2, trends in mgN/(m3·year) and
mgN/(m2·year), and precipitation in mm/year. p-values from Mann–Kendall trend analysis.
Statistically significant trends (p < 0.05) are identified in italics. TDN, total dissolved nitrogen;
TN, total nitrogen; SuspN, suspended nitrogen.
aTN = SuspN + TDN.
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Fig. 3. Annual and open water season (OWS) dissolved inorganic nitrogen deposition ratios (NH4
+/NO3

−) at the
Experimental Lakes Area for the period from 1970 to 2013. Grey bands are the 95% confidence intervals around
the linear regressions.

Fig. 4. Precipitation δ15N and δ18O–NO3
− values from the Experimental Lakes Area.
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p = 0.23). The mass-weighted mean of δ15N−NH4
+ deposition at the ELA (−7.4‰) is close to the

mean of published values at −6.4‰, but much lower than the mean value published for
δ15N−NO3

− (−2.7‰). These are the first δ15N−NH4
+ values for Canadian precipitation and among

the few for low-to-moderate NH4
+ deposition sites. The high intra-annual variability of δ15N in

deposition implies that if a large precipitation event situated at one end of the isotopic range is missed,
mass-weighed δ15N values may not be accurate. Given that the δ15N−NH4

+ values follow a trend
similar to δ15N−NO3

−, with the highest δ15N values in mid-summer, characterizing N inputs to
watersheds and lakes will require a comprehensive year-round sampling regimen.

N isotopes in lakes and streams
δ15N−NH4

+ and δ15N−NO3
− values in precipitation were lower and had a much wider range than

δ15N in stream and lake DOM, POM, and zooplankton (Fig. 6). Additionally, δ15N deposition values
exhibited much larger ranges than stream and lake values. Once filtered through the forest, wetlands,

Fig. 5. Precipitation δ15N−NH4
+, δ15N−NO3

−, and δ18O–NO3
− values from the Experimental Lakes Area as

function of the day of the year. Samples were collected between 17 July 1996 and 27 September 1996, and
3 June 2010 and 21 March 2012. Bar width represents the duration of bulk sample collection and height represents
error associated with measurement.
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and soil of the catchment, the δ15N–TN values exported to lakes, largely as DOM (Parker et al. 2009),
were about −3‰ to −1‰ (Fig. 6); very similar to the small amounts of NO3

− released from forested
catchments (Spoelstra et al. 2001; Mayer et al. 2002), but slightly higher than atmospheric deposition.
This N has several in-lake fates, each of which incurs isotopic fractionation: cycling through the
microbial loop, entering and transferring within the food web, deposition to sediments, nitrification,
denitrification, and export via the outflow. Differences in δ15N values between direct atmospheric N
deposition and N exported from forested catchment may help identify the relative importance of
different sources of N to the ELA lakes. Additionally, these differences in δ15N values will be incorpo-
rated into food webs and may be recorded in lake sediments.

Discussion

Historical deposition
The 45 year record of N deposition at the ELA is unique in Canada and allows for analyses of chang-
ing climate and atmospheric deposition in a remote region of North America that previously had low
dissolved inorganic N (DIN = NO3

− + NH4
+) deposition (Parker et al. 2009).

Large increases in NH4
+ deposition at the ELA lead to the observed increasing trend in the NH4

+ to
NO3

− ratio of atmospheric N deposition. Increasing NH4
+ in the bulk deposition collectors at the

ELA is likely in the form of wet deposition. Dry deposition of NH4
+ typically occurs over short

distances (1–2 km) from sources, whereas the atmospheric residence time for dissolved NH4
+ is

approximately 10 d (Asman et al. 1998). This allows for the transport of dissolved NH4
+ for hun-

dreds of kilometres. The observed increase in NH4
+ deposition at the ELA may be a result of

Fig. 6. δ15N values of precipitation NH4
+ and NO3

−, lake and stream zooplankton (Zoos), particulate organic
matter (POM), and dissolved organic matter (DOM) at the Experimental Lakes Area.
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regional changes. Prevailing wind direction at the ELA is from the west where the plains and prairie
landscapes in Manitoba, Saskatchewan, North Dakota, and parts of Minnesota are used for
agriculture (e.g., Honey 2010).

Heavily farmed land leads to increased emissions of NH3 to the atmosphere through the application
of NH4

+ fertilizer and N as manure (Asman et al. 1998). Both crop and animal farming result in
NH3 volatilization (Lee et al. 2011). In Manitoba, fertilizer application increased four-fold from
1970 to 2011 (Fig. S5). In those four decades, the number of hogs increased by an order of magnitude
and cattle have increased by 25% (Fig. S5) (Honey 2010). NH4

+ deposition has increased in the
midwestern USA over the period from 1985 to 2012 (Du et al. 2014). However, unlike the ELA, the
midwestern and northeastern USA show a decline in NO3

− deposition that has partially to totally
countered the increase in NH4

+ deposition, resulting in no trend in TN deposition at the national
scale (Du et al. 2014).

The ELA deposition record shows a two-fold increase in NH4
+ over 40 years, whereas NO3

− deposition
has not changed. Atmospheric DIN (NH4

+ + NO3
−) deposition during the 1990s was 4.6 kgN/(ha·year)

and slightly higher than other forested boreal sites at that time: 3.7 kgN/(ha·year) at Lac Laflamme,
Québec; 2.8 kgN/(ha·year) at Lac de la Tirasse, Québec (Watmough et al. 2005); and 2.3 kgN/(ha·year)
at modeled boreal forests (Holland et al. 1999). These rates are all lower than 8.7 kgN/(ha·year) at
TLW, east of Lake Superior (Spoelstra 2004). In the past 10 years, N deposition at the ELA has contin-
ued to rise (for 2013, the trend line indicates that DIN deposition is 5.4 kgN/(ha·year) and TN deposi-
tion is 6.7 kgN/(ha·year)), contemporaneously with the increase in agricultural intensity in Manitoba
and the prairies. As a result, the ELA is no longer among the sites of lowest N deposition, with higher
N deposition than the USA national mean (3.5 kgN/(ha·year)) (Du et al. 2014).

Lakes: big and small
Separating the sources, processes, and fate of N in catchments, lakes, and food webs requires isotopic
separation between the sources and adequate knowledge of the factors affecting isotopic fractionation
(Bond and Diamond 2011; Parnell et al. 2013; Phillips et al. 2014). Terrestrially derived N is mainly in
the form of DON, except for some NO3

− exported during spring snowmelt that has undergone little
in-stream or soil processing (Lamontagne and Schiff 1999; Burns and Kendall 2002). Forests retain
almost all atmospherically deposited N in the growing season, with some small leakage as DON,
especially during storms. At the ELA, direct N deposition to the lake surface accounts for one- to
two-thirds of the annual N load to these small headwater lakes, depending on the catchment-
to-lake-area ratio (Schindler et al. 1976; Flinn 2012). Given that the terrestrial stream flow is minimal
in summer and snowmelt precedes ice-off, atmospheric N dominates the open water season N inputs
to lakes. At the ELA, atmospheric δ15N of TN is lower than the terrestrial inputs and increasing
deposition of NH4

+ that is especially low in δ15N compared with terrestrial inputs may provide some
information for identifying N sources and processes.

The range in δ15N−NH4
+ values is large (22‰); twice as large as the total N isotopic enrichment

expected by the maximum length of aquatic food webs at the ELA (e.g., 2.6‰ per trophic level; see
Kidd et al. 1999; Vinebrooke et al. 2001). Because NH4

+ is rapidly assimilated in unproductive lakes,
NH4

+ epilimnetic concentrations in summer are typically <10 μgN/L. In some non-impacted head-
water lake systems, atmospheric N deposition can be 50% or more of total N input (Schindler et al.
1976; Findlay et al. 1994) and an even more important component of the summer N supply when ter-
restrial upland systems can become disconnected from downstream lakes. Changes in the δ15N value
of the N supply with time will affect baseline values assigned to food webs. Further, the change in the
ratio of NH4

+ to NO3
− may alter the food web structure given that the degree of preference for NH4

+

over NO3
− is species specific (Dortch 1990; Fogel and Cifuentes 1993; Glibert et al. 2016).
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In Lake Superior, where NO3
− concentrations have been increasing over the last 50 years (Dove and

Chapra 2015), atmospheric N deposition is a large input in the overall N budget, approximately equal
in magnitude to terrestrial N loading (Sterner et al. 2007). The underlying mechanisms for this
increase are unknown, spurring N cycling research in this large lake (e.g., Berges et al. 2014). Recent
work using NO3

− isotopes considered only atmospheric and river NO3
− values due to the lack of

δ15N−NH4
+ data. In those studies (Finlay et al. 2007; Sterner et al. 2007), the δ15N of inputs was

higher than the observed δ15N−NO3
− in the lake. Given that the ELA is immediately to the west of

Lake Superior, that NH4
+ deposition is increasing, and δ15N−NH4

+ is quite low, the role of NH4
+ in

the increasing NO3
− concentrations and affecting the interpretation of N sources in Lake Superior

using δ15N merits further attention (e.g., Kumar et al. 2008).

Finally, increasing NH4
+ in deposition coupled with its low δ15N−NH4

+ values has the potential to
shift the δ15N of sediments in lakes by affecting either the terrestrial organic N input or food web
baseline value. Increases in NH4

+ release as a result of agricultural activities (Galloway et al. 2003,
2004; Elser 2011) of low δ15N could provide one explanation for decreasing δ15N values in lake sedi-
ments that has been observed globally over the past 100 years (Holtgrieve et al. 2011).

Despite a lack of δ15N−NH4
+ data across Canada, the much lower δ15N−NH4

+ values in atmospheric
deposition relative to δ15N−NO3

− may aid in identifying overall changes in N cycling from large-scale
changes in agricultural fertilizer and tilling practices, land-use changes such as oil sands development
and forestry, and climate change.
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