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Abstract
Ranaviruses are an emerging group of pathogens capable of infecting all cold-blooded vertebrates. In
Europe, ranaviruses pose a particularly potent threat to wild amphibian populations. Since the 1980s
research on amphibian-infecting ranaviruses in Europe has been growing. The wide distribution of
amphibian populations in Europe, the ease with which many are monitored, and the tractable nature
of counterpart ex situ experimental systems have provided researchers with a unique opportunity to
study many aspects of host–ranavirus interactions in the wild. These characteristics of European
amphibian populations will also enable researchers to lead the way as the field of host–ranavirus inter-
actions progresses. In this review, we provide a summary of the current key knowledge regarding
amphibian infecting ranaviruses throughout Europe. We then outline important areas of further
research and suggest practical ways each could be pursued. We address the study of potential interactions
between the amphibian microbiome and ranaviruses, how pollution may exacerbate ranaviral disease
either as direct stressors of amphibians or indirect modification of the amphibian microbiome. Finally,
we discuss the need for continued surveillance of ranaviral emergence in the face of climate change.

Key words: microbiome, host–microbe interactions, wildlife disease, ecotoxicology, European
amphibians

Introduction
In 1979 a Scandinavian population of captive Atlantic cod (Gadhus morhua) began to exhibit elevated
levels of morbidity and mortality. Affected fish exhibited a novel condition characterised by severe
skin ulcerations, and investigation of the causes behind this disease outbreak implicated a virus
belonging to the group Iridoviridae (Jensen et al. 1979). Since the advent of modern molecular
techniques, researchers have revisited this case and genomic analysis of the isolated viruses has shown
that this outbreak was, in fact, the first recorded incidence of ranavirosis (the often lethal disease
caused by ranaviruses) in Europe (Ariel et al. 2010). Despite the importance of aquaculture and
fisheries to many European economies (Crilly and Esteban 2013), the viral diversity and host range
of ranaviruses infecting farmed and wild fishes in Europe has received only sporadic research effort
over the last four decades (see recent reviews by Price et al. 2017b; Allain and Duffus 2019).
However, fish are not the only group of vertebrates impacted by ranavirosis in Europe; ranaviruses
are also known to establish infections in European herpetofauna (Cunningham et al. 1997; Balseiro
et al. 2009). To date, reports of ranaviral infection and disease in reptiles are rare (Marschang 2011;
Price et al. 2014, 2017b), but ranavirosis is considered to be an emerging infectious disease of
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European amphibians and is believed to pose a significant conservation threat (Daszak et al. 1999;
Earl and Gray 2014; Campbell et al. 2018a).

The first incidences of ranavirosis in European amphibians were reported by members of the public in
the United Kingdom during the late 1980s (Cunningham et al. 1997). Since that time, research effort
devoted to these deadly pathogens has slowly grown both globally and in Europe (Fig. 1). It is
currently accepted that there are two primary lineages of ranavirus circulating within European
amphibians, the Frog Virus 3 (FV3)-like and the common midwife toad virus (CMTV)-like viruses
(reviewed in Price et al. 2017a). Although there is overlap in the geographical range of these viruses,
each is apparently impactful in a particular continental region, separating the study of amphibian
ranaviruses in Europe into two distinct theatres: continental Europe and the islands that comprise
the United Kingdom. The distribution and severity of ranavirus outbreaks in Europe have been given
in-depth treatment in two recent reviews (Price et al. 2017a; Allain and Duffus 2019). Our goal in this
article is not to supplant those works. Instead, here we highlight gaps in our knowledge concerning
the forces shaping interactions between amphibian hosts and ranaviruses, and predictors of the
severity of ranavirosis outbreaks, that should be prioritised for research. First, we present a brief
summary of the key research findings from each of the main European theatres, before highlighting
important questions that remain to be answered and potential avenues of future investigation.

Ranavirosis in the United Kingdom
The United Kingdom is densely populated, resulting in significant overlap between the human
population and wildlife (Fuller and Gaston 2009). As a result, many United Kingdom amphibian
populations reside in small water bodies, such as urban garden ponds, where they are easily observed
by humans. In the late 1980s members of the British public began to report unusual mass mortality in
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Fig. 1. Literature trends of research on ranavirus from a Scopus search, yielding number of papers per year when
searching title, abstract, and keywords. Research on ranavirus has been increasing year on year since the 1990s
(search term “ranavirus”, green circles). However, of those only a small subset represent distinct research on
microbiomes (“ranavirus microbio*”, orange circles), though these will also include microbiology studies.
Finally, of those, only a small fraction represent research on European hosts (blue circles).
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such populations of the European common frog (Rana temporaria; Cunningham et al. 1997).
Deceased adult R. temporaria were found exhibiting severe skin ulceration and hemorrhaging of the
internal organs (Cunningham et al. 1997). The Frog Mortality Project (FMP) was established in
1992 by scientists at the Zoological Society of London to collate and investigate these reports of
disease incidence (Cunningham et al. 1997). The FMP solicited reports of frog mortality from the
general public using an outreach campaign and facilitated the collection and post-mortem examina-
tion of carcasses collected at the site of reported outbreaks. Pathological and histological examination
revealed that a ranavirus closely resembling FV3 was the likely cause (Cunningham et al. 1997).
Comparative molecular analysis showed that this virus was highly similar to North American isolates
of FV3 and was likely introduced into the United Kingdom via the international trade in amphibians
and fish (Hyatt et al. 2000).

The FMP has generated a large archive of both amphibian tissue samples and associated viral isolates.
Genomic analyses of ranavirus isolates collected as part of the FMP have shown that not only were
there at least two distinct introduction events of FV3 into the United Kingdom (Price et al. 2016,
2017a; Duffus et al. 2017) but also that an additional ranaviral species, CMTV, has been present in
the United Kingdom since as early as 1995 (the earliest known detection of CMTV; Price et al.
2017a). Despite the presence of CMTV, it is believed that all records of ranavirosis in the United
Kingdom are associated with FV3 (Price et al. 2016, 2017a). In stark contrast to ranavirosis outbreaks
caused by FV3 elsewhere in the world, which often exhibit an extensive host range in terms of species
and life stages impacted, mortality due to ranavirosis in the United Kingdom is almost entirely limited
to R. temporia (Duffus et al. 2013; Allain and Duffus 2019) and is exclusively observed in post-
metamorphic animals (Duffus et al. 2013).

Through the collection of disease incidence records the FMP has also spawned a database of
R. temporaria populations that reside on private property and whose health is continually visually
monitored by property owners (Teacher et al. 2010; Lawson et al. 2015). With the help of these
“citizen scientists” researchers in the United Kingdom have been able to establish a network of
R. temporaria populations of known disease history, allowing for several comparative and (or)
longitudinal studies that have advanced our understanding of interactions between ranaviruses and
their hosts at the individual and the population level (Lawson et al. 2015). Research within this
network of comparative populations has shown that the emergence of ranavirosis has resulted in a
reduction of R. temporaria numbers by an average of over 80% in infected populations, though local
extinction and recovery have also been documented (Teacher et al. 2010). Additionally, ranavirosis
appears to have (i) altered the population genetics (Teacher et al. 2009a), (ii) reversed the mating
system (Teacher et al. 2009b); and (iii) truncated the age structure of impacted R. temporaria popula-
tions (Campbell et al. 2018a). Applying predictive models to disease incidence reports and their
associated environmental metadata has also revealed that the spread of FV3 within the United
Kingdom is very likely facilitated by human translocation and pathogen pollution (Price et al. 2016)
and that frequency and severity of ranavirosis outbreaks is tightly linked to the climactic conditions
(Price et al. 2019). Data drawn from these incidence reports have also revealed that the occurrence
and severity of ranavirosis outbreaks are correlated with host population density, the presence of
secondary host species (hosts which can become infected with and shed virus but are themselves
asymptomatic, including the common toad (Bufo bufo) and various species of fish), and the use of
garden chemicals (North et al. 2015). Epidemiological models have demonstrated that the persistence
of ranaviruses within R. temporaria populations can be maintained via exclusively adult to adult
contact transmission (Duffus et al. 2019); however, the drivers of the distribution and intensity of
ranavirus infection in the United Kingdom remain poorly understood. Though many monitored
common frog populations in the United Kingdom appear to have never suffered outbreaks of ranavi-
rosis, recent research detected the presence of FV3-like ranavirus in frogs originating from all
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populations studied, including those with no history of observable ranavirosis (Campbell et al. 2018b).
Critically, this suggests that ranaviruses may be ubiquitously distributed within R. temporaria popula-
tions in the United Kingdom, but that whether or not a population develops ranavirosis depends on
some additional cryptic factors that promote infection of hosts and cause those infections to reach
clinical or lethal thresholds.

For example, there is growing evidence suggesting a potential link between the occurrence of ranavi-
rosis and composition of bacterial communities residing on the amphibian skin. Differing bacterial
communities have been detected on the skin of frogs originating from populations with endemic
ranavirosis versus frogs from populations with no history of disease, based on both transcriptomic
(Campbell et al. 2018b) and genomic DNA (Campbell et al. 2019) sequences. Beyond these field-based
studies, the outcome of acute ranaviral infection has been shown to be impacted by the diversity of the
amphibian skin microbiome during an experimental study that showed that metamorphic
R. temporaria with a depauperate bacterial microbiome were more likely to succumb to infection with
FV3 than were metamorphic R. temporaria possessing a skin microbiome with higher species richness
(Harrison et al. 2019).

Ranavirosis on continental Europe
Despite a long history of ranaviruses impacting fish on continental Europe (Jensen et al. 1979; Ariel
et al. 2010), since mid-2000 ranavirosis has also been emerging in amphibians. The primary causes
of ranavirus-induced mortality on continental Europe appear to be several strains of CMTV
(reviewed by Price et al. 2017b). CMTV are considered a distinct species complex within the genus
Ranavirus (Chinchar et al. 2017) and were first discovered during investigations of a large mortality
event that occurred at the Picos de Europa National Park, Spain, in 2007 (Balseiro et al. 2009). This
outbreak impacted the larval life-stage of the common midwife toad (Alytes obstetricans), lending
the virus its name. Since 2007 there have been repeated outbreaks of ranavirosis attributed to
CMTV-like ranaviruses throughout continental Europe, affecting a wide range of species and life
stages. Mass mortality events have been observed in Danish edible frogs (Pelophylax kl. Esculentus;
Ariel et al. 2009) and a French population of R. temporaria (Miaud et al. 2016). Worryingly, CMTV
has also been documented to cause local outbreaks of ranavirosis that can span entire
amphibian community assemblages and all life stages, causing pronounced and persistent population
declines (Price et al. 2014; Rijks et al. 2016; Rosa et al. 2017).

Several strains of CMTV are known to be circulating in Europe, and experimental work has revealed
these strains to vary markedly in pathogenicity (Saucedo et al. 2018, 2019). A lack of genetic diversity
in CMTV isolates collected from various outbreaks and a high number of genetic loci that appear to
be under strong selection has led to the hypothesis that CMTV is an invasive pathogen on continental
Europe (Price 2015; Price et al. 2017b), though the route of invasion remains unknown. Although
FV3-like ranaviruses are known to occur in Europe in both amphibians and reptiles (Price et al.
2014; Stöhr et al. 2015) and are known to occur in sympatry with CMTV-like viruses, such incidences
are rare (Price et al. 2017b). Recent studies have shown that in regions where both viral species groups
co-occur there is potential for high levels of recombination resulting in hybrid viruses, which could
potentially possess elevated virulence compared to either CMTV- or FV3-like viruses (Price et al.
2014; Price 2015; Claytor et al. 2017; Rosa et al. 2017). Overlap also exists between CMTV and the
amphibian chytrid fungi, and co-infections are known to establish (Rosa et al. 2017); however, little
evidence currently exists that either pathogen exacerbates the impact of the other (Rosa et al. 2017).
The gross pathology of ranavirosis caused by CMTV is identical to that which is caused by FV3
(e.g., Cunningham et al. 1997; Balseiro et al. 2009); however, CMTV is known to replicate initially
in the oral cavity of infected amphibians, before invading the connective tissues and subsequently
the organs, including the skin (Saucedo et al. 2019). Research that focused on an alpine population
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of R. temporaria in France has also been key in proving the efficacy of environmental DNA or
“e-DNA” at detecting the presence of ranaviruses in European amphibian populations (Miaud et al.
2019). Critically, the use of e-DNA not only allows for the detection of pathogens without the need
for intensive or invasive sampling techniques of hosts, but also permits quantification of temporal
change in pathogen loads in the environment (e.g., Hall et al. 2016; Miaud et al. 2019). Such data
could prove invaluable for attempting to understand spatial variation in the severity of ranavirosis
outbreaks.

Future directions
Although European research has been instrumental in advancing the study of amphibian infecting
ranaviruses around the world, there remain significant gaps in our understanding that need to be
addressed if effective management and mitigation strategies of these emerging pathogens are to be
developed. Below, we outline these key directions of future research and how they may be pursued.
Although we give special consideration to how these knowledge gaps may be addressed in European
amphibian systems, these directions of research should be considered a priority of researchers globally.

Further investigation of the interaction between the amphibian
microbiome and ranaviruses
There is substantial and growing evidence that the amphibian skin microbiome is vital to the ability of
amphibians to resist or tolerate infection by pathogens (Harris et al. 2006, 2009; Becker et al. 2015).
Although this evidence is primarily drawn from studies concerning amphibians infected with the
chytrid fungi, including Batrachochytrium dendrobatidis (Bd) (Kueneman et al. 2016; Harrison et al.
2020) and B. salamandrivorans (Bates et al. 2019), recent research suggests that host-associated
microbial communities in amphibians also represent a key component of their immune defense
against ranaviruses. For example, skin microbiome structure has been found to correlate with
population disease-status in the wild (Campbell et al. 2018b, 2019) and survival of acute ranaviral
infection under laboratory conditions (Harrison et al. 2019). Furthermore, gut microbiomes of
developing wood frogs (Rana sylvatica) have been shown to be critical modulators of later life
resistance to ranavirus (Warne et al. 2019). These are potentially important findings as the ability of
probiotic treatments to mitigate chytridiomycosis has been experimentally demonstrated
(e.g., Kueneman et al. 2016) and similar treatments for ranavirosis would significantly advance
amphibian conservation efforts. However, despite the clear importance of the host-associated
microbial communities to emerging pathogens such as ranaviruses, several significant gaps in our
knowledge remain that must be addressed before such probiotic treatments could be developed.

Generality of microbiome–pathogen interactions
To date, all evidence of a link between ranavirosis and the amphibian skin microbiome originates
from within the United Kingdom R. temporaria field system outlined above, and studies on the inter-
action between gut microbiomes, host immunity, and ranavirus remain rare (e.g., Warne et al. 2019).
Understanding the generality of these patterns in other host species and locations is a vital first step in
quantifying the importance of amphibian microbial communities in shaping resistance or tolerance to
ranaviruses. As such, further field and experimental studies of the amphibian microbiome in popula-
tions with varying ranaviral disease history, particularly in a diversity of vulnerable species outside of
the United Kingdom, are a crucial first area of future research.

How should we measure host–microbe interactions?
Understanding the ecology of host-associated microbes, and how they influence host health is chal-
lenging in wild systems. Researchers face the choice of a variety of molecular methods for quantifying
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the composition of microbial communities, including those that simply yield information on the
presence and relative abundance of microbial taxonomic groups (e.g., 16S rRNA amplicon
sequencing), and those that also directly estimate functional properties of the microbiome
(e.g., metagenomics, metatranscriptomics, and metabolomics (Harrison and Cameron 2020)). An
outstanding issue is that the precision with which we can measure host–microbe interactions, and
thus the inferences we make, depend on which of these methods we use. For example, Campbell
et al. (2018b) profiled the R. temporaria microbiome using bacterial reads filtered from a transcrip-
tomics study of the response of wild frog populations to endemic ranavirosis. They found that
Bacillus subtilis, which is a bacterium commonly used as a probiotic in the aquaculture industry
(e.g., Aly et al. 2008; Liu et al. 2012; Ran et al. 2012), was two orders of magnitude more abundant
on frogs that were persisting at sites with endemic disease versus frogs from ranavirosis-free popula-
tions. However, the same pattern was not detected during a follow-up study that used 16S rRNA
amplicon sequencing to categorise and compare the skin bacterial community structure of the same
populations from samples collected the following year (Campbell et al. 2019). This discrepancy
between results based on relative bacterial abundance versus bacterial transcription raises two
interesting questions that warrant further study. Firstly, does transcriptional activity or relative
biomass present the most informative indication of the importance of a microbial species in the
amphibian skin microbiome? Understanding which potential measure is a truer reflection of genuine
interaction between bacterial taxa and a pathogen will allow for more accurate detection of bacterial
species which possess the potential to serve as probiotics in mitigation strategies. Targeted
transcriptomic studies of the amphibian commensal skin bacteria (often termed the
metatranscriptome) are rare (Rebollar et al. 2016). However, the incorporation of transcriptomic
analysis in future research of the link between that amphibian skin microbiome and ranavirosis will
be important in addressing this question. Moreover, “omics” technologies such as transcriptomics
can also resolve the taxonomy of microbes to species and even strain level, yielding more precise
information on which bacterial groups are responsible for observed differences in host response to
disease. An experimental infection trial incorporating appraisal of shifts in the bacterial community
structure using 16S rRNA amplicon techniques (relative abundance) versus changes to bacterial
transcription in the same individuals following exposure to a ranavirus would be useful in determin-
ing whether bacterial biomass or transcription are more informative in predicting the outcome of
infection by a pathogen. A targeted comparison of the metatranscriptomes of wild amphibian
populations persisting at sites with endemic ranavirosis versus those from disease-free populations
would also help to determine which species of bacteria are transcriptionally linked to ranavirosis
under natural conditions.

Microbiome structure vs. stability
The differences between the two studies discussed above could also represent a temporal difference in
the skin microbiomes of the animals at the populations sampled. Though a vast number of studies
focus on drivers of microbiome structure in the wild, very few focus on microbiome stability and its
consequences for the host. Recent experimental work has revealed that the stability of the amphibian
skin microbiome is governed by the complexity of the environmental microbial reservoir (Harrison
et al. 2019). This gives us strong reason to expect that there is marked variation in the stability of
the skin microbiome in wild frogs, which may even vary by population in concert with local environ-
mental conditions. Capture–mark–recapture techniques such as visible implant elastomer tagging or
radio-frequency identification tags could be used to examine the temporal stability of the amphibian
skin microbiome in the wild by identifying and repeat sampling individual wild amphibians in multi-
year frameworks. This would allow for the quantification of the composition, stability, and functional
activity of the amphibian skin microbiome and for these traits to be linked to ranaviral disease
dynamics throughout longitudinal studies.
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Understanding the mechanism underlying microbiome–disease relationships
Whilst present evidence represents an intriguing first demonstration of the potentially important role
of the commensal microbiome for determining host response to ranavirosis, the mechanisms and
directionality of this relationship are not understood (Campbell et al. 2019; Harrison et al. 2019).
Particularly, it is unknown whether the composition of bacteria on amphibian skin is the result of
originating from a population with endemic ranavirosis or whether certain bacterial community com-
positions can predispose a population to suffer outbreaks of ranavirosis. Both ranavirosis (Harrison
et al. 2019) and chytridiomycosis (Jani and Briggs 2014) have been shown to perturb the amphibian
skin microbiome, which could be expected to generate correlations between microbiome structure
and disease status. Understanding the direction of this relationship is critical to appreciate the true
potential of using probiotic treatments or bioaugmentation strategies to combat ranaviruses in wild
populations. Development of techniques that enable the manipulation of bacterial communities
provide the potential to perform experimental infection trials using amphibians with altered cutane-
ous microbiomes to examine how the presence or absence of key microbial species modulates
response to pathogen exposure and subsequent survival. This type of experiment will prove invaluable
in disentangling cause and effect in apparent microbiome–disease relationships. This is particularly
relevant to when we think about how an individual bacterial species might be interacting with the
pathogen. For example, many bacterial species have been shown to demonstrate inhibition of growth
of B. dendrobatidis (Antwis and Harrison 2018; Harrison et al. 2020), suggesting a direct interaction.
However, microbes can also effect changes to a host’s response to a pathogen indirectly by stimulating
host gene expression (Rebollar et al. 2018). To date, no study has discerned whether the microbiome’s
role in governing variance in host resistance to ranavirus is driven by direct interaction with the
pathogen, or indirect effects on the host. Lack of knowledge regarding this mechanistic pathway
remains a clear gap in our understanding that should be addressed as a priority.

Quantifying extrinsic drivers of ranavirosis outbreaks
It is widely appreciated that host–pathogen interactions in many systems are complex and
often modulated by external factors, including the environment in which those interactions occur
(e.g., James et al. 2015). Recent research conducted within the longitudinally studied R. temporaria
populations in the United Kingdom clearly demonstrates that the same is true in the case of
ranaviruses and amphibians. The severity of ranavirosis outbreaks within a population has been
linked to the use of horticultural chemicals, particularly moluscicides, within or near the water body
in which that population resides (North et al. 2015). Likewise, ambient temperature can alter
ranavirosis dynamics and infection trajectories (Price et al. 2019), which will have marked implica-
tions for variation in disease risk across the geographical distribution of hosts. Here we briefly discuss
key knowledge gaps regarding how these abiotic stressors, temperature, and pollutants, influence
amphibian disease dynamics, and how they should be addressed.

Host–pollutant–pathogen interactions
The mechanisms by which pollutants may modulate host response to disease are not fully resolved
but can broadly be separated into direct and indirect components (Fig. 2). For example, environmen-
tal pollutants can act as direct physiological stressors of the amphibian immune system (Robert et al.
2018; Thambirajah et al. 2019), heightening their susceptibility to disease (Fig. 2A). Interestingly, this
relationship appears to be reciprocal and the presence of a ranavirus has also been shown to
exacerbate the lethality of pesticides (Pochini and Hoverman 2017). Previous studies have shown that
herbicides and pesticides can reduce resistance of amphibians to fungal pathogens (e.g., Krynak et al.
2017), perhaps by causing a reduction in anti-microbial peptide (AMP) production (Schadich 2009)
and subsequently reduced skin peptide defense against Bd (Davidson et al. 2007; Fig. 2). Both
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pathways involve a direct effect of the pollutant on the host immune response, which determines sub-
sequent response to a pathogen (Fig. 2A).

However, despite the important role of the microbiome in governing host response to disease, the
potential for pollutants to effect changes in amphibian pathogen resistance indirectly via their
influence on the microbiome has received relatively little attention (but see McCoy and Peralta
2018). Both heavy metals from agricultural and industrial run-off, and antimicrobials from pharma-
ceutical pollutants (Casado et al. 2019), can reduce amphibian gut microbiome diversity (Zhang
et al. 2016) and skin microbiome composition (Hernández-Gómez et al. 2020). Pollutant–
microbiome relationships may arise either because of a direct effect of the pollutant on the
microbiome, or indirectly because pollutants first alter host skin AMP secretion that in turn perturb
skin microbial communities (Fig. 2B). Both scenarios represent important pathways for future
investigation. Finally, there is strong evidence that the amphibian skin microbiome is populated from
environmentally available bacterial species (Kueneman et al. 2014; Longo et al. 2015; Campbell et al.
2019; Harrison et al. 2019). Thus, anything that alters the pool of environmental microbes capable
of colonizing the host may also drive differences in subsequent host microbiome structure. Local
amphibian community complexity may similarly alter the dynamics and persistence of environmental
microbes, for example by introducing novel microbes through immigration (Fig. 2C). Likewise,
environmental pollutants can change the diversity of microbial assemblages within both soil and
aquatic reservoirs (e.g., Bissett et al. 2013; Muturi et al. 2017; McCoy and Peralta 2018), and indirectly
modulate the composition of the amphibian skin microbiome via these environmental effects
(Fig. 2D).

Despite growing interest in amphibian microbiome research, studies of host–microbiome–
environment interactions remain rare particularly in wild systems (e.g., Varga et al. 2019). Future
work should seek to quantify the mechanism by which pollutants alter host susceptibility to disease
by simultaneously studying host gene expression and skin microbiome structure in the presence of
such contaminants. Surveying at sites with and without historical ranavirus prevalence has already
uncovered systematic differences in the structure of the amphibian skin microbiome and the

Fig. 2. Schematic diagram of the pathways via which pollutants may change host response to disease.
(A) Pollutants may exert direct effects on host immunity. (B) Pollutants may effect changes in the microbiome
indirectly by first driving differences in host AMP production that then select for differential microbial prolifera-
tion. Altered microbiomes then compromise host response to the pathogen. Finally, both (C) the wider amphibian
community and (D) pollutants may alter the environmental reservoir of microbes capable of colonising a focal
amphibian host, thus indirectly altering microbiome-mediated immunity to pathogens.
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expression of host genes related to the secretion of anti-microbial peptides and inflammation based
on disease status (Campbell et al. 2018b, 2019). As amphibians source their skin microbiota from
environmental reservoirs, we could expect different geographic locations to influence present
amphibian population’s microbiome structure (Campbell et al. 2019; Ross et al. 2019). Therefore, a
priority for future studies would be to survey amphibian populations across a wide spatial scale
encompassing multiple habitat types, but also varying in ecological gradients of both ranaviral
pathogen loads and environmental pollutants. Focal pollutants could include heavy metals near
(historically) industrial areas (e.g., Costa et al. 2016), pest-control agents such as molluscicides
(North et al. 2015), and fertilizer chemicals (e.g., nitrates) known to affect amphibian physiology
and susceptibility to pathogens (e.g., McCoy and Peralta 2018). Developing our understanding of
how the amphibian skin microbiome, environmental contaminants, and ranavirosis are inter-linked
is important for amphibian conservation efforts and for potential mitigation strategies, such as probi-
otic treatments; to work in wild systems we must have as full an appreciation as possible about how
they will influence and be influenced by the complex interactions between host, pathogen, and
environment.

Continued surveillance in the face of environmental change
Ranavirosis outbreaks due to FV3 appear to happen seasonally in the United Kingdom and most
incidences of ranavirosis occur when ambient temperatures are 16 °C or higher (Cunningham et al.
1997; Teacher et al. 2010; Price et al. 2019). It has also been experimentally shown that FV3 grows
faster at higher temperatures, resulting in a positive correlation between temperature and infection
severity in R. temporaria (Price et al. 2019). If current trends in climate warming continue, then the
annual time frame during which average monthly temperatures exceed 16 °C will increase and the
geographical area over which these conditions are met will spread throughout the United Kingdom
(Price et al. 2019). This spread will result in a higher number of populations experiencing ranavirosis
outbreaks. It is also likely that climate change will drive distribution shifts of many amphibian species
in the United Kingdom (Dunford and Berry 2013), potentially forcing yet more amphibian popula-
tions into regions where ranavirosis outbreaks are increasingly likely.

Not only has it been shown that a warming climate will increase the incidence of ranavirosis in the
United Kingdom but also that associated climactic instability may be associated with reduced popula-
tion viability of impacted populations, acting in tandem with age truncation of R. temporaria popula-
tions caused by endemic ranavirosis (Campbell et al. 2018a). Age-truncated R. temporaria
populations exhibit an over-abundance of younger, smaller breeding individuals (Campbell et al.
2018a). As fecundity of R. temporaria is tightly correlated with body size, per capita recruitment rate
of entire populations existing with endemic ranavirosis is lower than that of populations that are
disease-free (Campbell et al. 2018a). Population matrix models suggest that this lower recruitment
rate potentially heightens the impact of stochastic events that further reduce recruitment such as late
frosts, or drought resulting in an increased likelihood of population collapse (Campbell et al. 2018a).
As climactic instability also increases due to climate change, the impact of ranavirosis outbreaks on
the population level may also be more severe across the ever-expanding range. However, additional
population models of R. temporaria have shown that population dynamics are primarily influenced
by the survival of adults and not larval or metamorphic individuals (Miaud et al. 1999; Biek et al.
2002). This means the potential for ranavirosis induced population instability may well be unique to
the United Kingdom, where ranavirosis impacts adult R. temporaria rather than larval amphibians,
which is the case elsewhere in Europe and around the world. Nevertheless, in the United Kingdom,
it is important to continue to monitor R. temporaria populations and track the spread of ranavirosis
throughout the country as closely as possible.
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Little is yet known about the influence of climate on the virulence and spreading potential of CMTV.
Understanding the influence of temperature on CMTV through experimental growth assays and in
vivo challenge experiments will allow for predictions of how climate change will impact the spread
of CMTV throughout continental Europe and the expansion of annual periods of disease outbreaks.
The use of e-DNA monitoring tools to quantify environmental loads of ranavirus and subsequent
infection risk will be crucial for refining predictive models of outbreak incidence and intensity across
environmental gradients, such as intra- and interannual variation in temperature (e.g., Hall et al.
2016; Miaud et al. 2019).

Studies looking into the indirect impacts of CMTV outbreaks on European amphibians are also rare.
Field-based studies aimed at understanding how outbreaks of ranavirosis due to CMTV impact the
structure of continental European amphibian populations through mechanisms such as age trunca-
tion or impinged recruitment will also allow for more accurate predictions of the impact of CMTV
on amphibian populations across the continent. Additionally, understanding which regions of
continental Europe stand to be more heavily impacted by the spread of ranavirosis requires that we
understand which regions harbor the highest number of susceptible species. In vivo challenge
experiments could help provide this information. Coupled with an effective surveillance project, likely
partially implemented using e-DNA techniques, conducted at the leading edge of disease emergence,
precious conservation resources can be targeted towards those regions which are most in peril or
those regions where intervention stands the greatest chance of success.

Fill-in ecological blanks for better epidemiological models
Recent events have demonstrated the critical importance of well-parameterised epidemiological
models in predicting the spread of emerging diseases and designing and implementing successful
mitigation strategies (or not). A small number of studies have attempted to apply various types of
epidemiological models to the emergence of ranaviruses in Europe (Campbell et al. 2018a; Duffus
et al. 2019), and have provided useful insight into several aspects of host–ranavirus interactions in a
European context. Despite this, these studies have also demonstrated that a dearth of knowledge
regarding the basic ecology of European amphibians and the ranaviruses that infect them can result
in tenuous parameterization of these models from the literature, often drawn from studies focused
on distantly related host species or systems with which there is minimal apparent ecological overlap
(Campbell et al. 2018a; Duffus et al. 2019). Refining our understanding of host-ranavirus interactions
requires that we quantify and incorporate fundamental ecological variation into our models. Within
populations, individuals will vary markedly in key life history traits such as growth rate, reproductive
output, migration propensity, and (immune) genotype. Likewise, the ranaviral genomic variants hosts
are exposed to are expected to vary in replication rates and subsequent transmission potential.
Collectively these traits will interact to influence parameters such as the likelihood, frequency, and
intensity of ranavirus infection within, and transmission among, amphibian populations. Tackling
these knowledge gaps will undoubtedly require long term data sets of marked individuals paired
with frequent monitoring, quantification, and genotyping of ranaviral genomic variants to understand
the factors governing long term probability of persistence of both pathogen and hosts in natural
populations. Using these long-term data sets to quantify rates of disease transmission within and
among populations will undoubtedly lead to strong epidemiological models, increasing the
accuracy with which researchers can make predictions about the spread of these deadly emerging
pathogens.

Conclusion
Ranaviruses are an emerging disease threat to European amphibian populations. Both directly,
through elevated mortality, and indirectly, through the effects of endemic disease on host populations,
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ranaviruses have been found to cause catastrophic and sustained declines in amphibians in the United
Kingdom and on continental Europe. As climate change drives global temperature increases and
climatic instability, the pace of ranaviral emergence and the severity of ranavirosis outbreaks in
Europe are likely to follow suit. This will result in the exposure of more populations and additional
species over a wider annual time period and a reduction in the long-term viability of impacted
populations. In light of this, it is imperative that we continue to monitor the spread of ranaviruses
throughout Europe and to assess which currently naïve European amphibian species are likely to be
most vulnerable to infection, allowing for the targeting of conservation efforts in regions where the
impact of ranaviral emergence is likely to be particularly severe.

Happily, recent research suggests that the amphibian skin microbiome may offer a source of potential
mitigation strategies in the form of probiotic treatment and environmental bioaugmentation, as it has
done in response to the chytrid fungi (Kueneman et al. 2016; Antwis and Harrison 2018; Harrison
et al. 2020). For the potential efficacy of such strategies to be appraised, a number of fundamental
research questions need to first be addressed. Primarily, we must aim to assess the generality of rela-
tionships between the amphibian skin microbiome and ranavirosis in a wide array of systems.
Additional questions regarding the measure by which we judge the importance of a microbial species
in a microbiome and the subsequent impact of a complex environment on host/microbiome–
pathogen interactions will need to be addressed. European research has been critical in generating
knowledge regarding ranaviruses and their impact on amphibians. The proximity within which many
European amphibian populations live to humans, coupled with the proven potential for significant
public engagement in the study of ranavirosis in Europe, presents unique opportunities to address
these important research questions that could lead to advances in amphibian conservation not just
in Europe but around the world.
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