Applied Filters
- Conservation and Sustainability
- Colla, Sheila RRemove filter
- Open AccessRemove filter
Journal Title
Publication Date
Author
Access Type
1 - 3of3
Save this search
Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Filters
You do not have any saved searches
- OPEN ACCESS
- Jenny L. McCune,
- Sheila R. Colla,
- Laura E. Coristine,
- Christina M. Davy,
- D.T. Tyler Flockhart,
- Richard Schuster, and
- Diane M. Orihel
Pollution is a pervasive, albeit often invisible, threat to biodiversity in Canada. Currently, the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) relies on expert opinion to assess the scope (i.e., the proportion of a species’ population that may be affected) of pollution to species at risk. Here, we describe a spatially explicit, quantitative method for assessing the scope of pollution as a threat to species at risk in Canada. Using this method, we quantified the geographic co-occurrence of 488 terrestrial and freshwater species and pollution sources and determined that, on average, 57% of the mapped occurrences of each species at risk co-occurred with at least one pollution source. Furthermore, we found a weak correlation between the scope of the threat of pollution as assessed by COSEWIC expert panels and the geographic overlap of species occurrences and pollution sources that we determined with our quantitative method. Experts frequently identified scope of pollution as absent or negligible even for species with extensive co-occurrence with pollution sources, especially vascular plants. Clearly, a quantitative approach is needed to make accurate estimates of the scope of pollution as a threat to species at risk in Canada. - OPEN ACCESS
- Adam T. Ford,
- Abdullahi H. Ali,
- Sheila R. Colla,
- Steven J. Cooke,
- Clayton T. Lamb,
- Jeremy Pittman,
- David S. Shiffman, and
- Navinder J. Singh
Conservation relies on cooperation among different interest groups and appropriate use of evidence to make decisions that benefit people and biodiversity. However, misplaced conservation occurs when cooperation and evidence are impeded by polarization and misinformation. This impedance influences actions that directly harm biodiversity, alienate partners and disrupt partnerships, waste resources, misinform the public, and (or) delegitimize evidence. As a result of these actions, misplaced conservation outcomes emerge, making it more difficult to have positive outcomes for biodiversity. Here we describe cases where a failed appreciation for cooperation, evidence, or both have eroded efforts to conserve biodiversity. Generally, these case studies illustrate that averting misplaced conservation requires greater adherence to processes that elevate the role of evidence in decision-making and that place collective, long-term benefits for biodiversity over the short-term gains of individuals or groups. Efforts to integrate human dimensions, cooperation, and evidence into conservation will increase the efficacy and success of efforts to conserve global biodiversity while benefiting humanity. - OPEN ACCESSInvertebrate pollinators are in trouble: particularly documented are declines among bees and butterflies. Interacting stressors include pesticides, pathogens, habitat loss, nonnative species, and climate change. Many governments have strategies to reduce negative pressures on pollinators, but Canada does not despite widespread public interest in pollinator health. This study serves as a needs assessment for science-based policy solutions for wild pollinator conservation in Canada. We designed a Policy Delphi survey technique to identify solutions that experts deem both desirable and feasible. Our secondary aim was to identify research priorities that would inform the implementation of these solutions. Sixty % of the 83 unique solutions were supported and feasible at a high consensus level (10% were “strongly” supported and “definitely” feasible). General themes included improving the Canadian government's approach in assessing pesticide risk to pollinators, curbing pathogen spillover/spillback between managed and wild pollinators, and reducing the reliance of Canadian agricultural systems on pesticides, among others. We discuss solutions in reference to pollinator conservation policies recommended by the broader scientific community and identify policy levers within the context of Canada's highly decentralized approach to biodiversity conservation/management and a political economy that uses high numbers of managed, mostly nonnative bees for pollination services.