Applied Filters
- Article
- Davy, Christina MRemove filter
- Open AccessRemove filter
Journal Title
Topics
Publication Date
Author
- Anderson, Alexandra M1
- Baerwald, Erin F1
- Burles, Douglas W1
- Colla, Sheila R1
- Coristine, Laura E1
- Dogantzis, Kathleen1
- Donaldson, Michael E1
- Flockhart, D T Tyler1
- Jardine, Catherine B1
- Jung, Thomas S1
- Kyle, Christopher J1
- Lausen, Cori L1
- McAlpine, Donald F1
- McBurney, Scott1
- McCune, Jenny L1
- Orihel, Diane M1
- Park, Allysia1
- Rico, Yessica1
- Ritchie, Kyle1
- Schuster, Richard1
- Vanderwolf, Karen J1
- Willis, Craig K R1
- Zimmerling, J R1
Access Type
1 - 3of3
Save this search
Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Filters
You do not have any saved searches
- OPEN ACCESS
- Christina M. Davy,
- Michael E. Donaldson,
- Yessica Rico,
- Cori L. Lausen,
- Kathleen Dogantzis,
- Kyle Ritchie,
- Craig K.R. Willis,
- Douglas W. Burles,
- Thomas S. Jung,
- Scott McBurney,
- Allysia Park,
- Donald F. McAlpine,
- Karen J. Vanderwolf, and
- Christopher J. Kyle
The fungus that causes bat white-nose syndrome (WNS) recently leaped from eastern North America to the Pacific Coast. The pathogen’s spread is associated with the genetic population structure of a host (Myotis lucifugus). To understand the fine-scale neutral and immunogenetic variation among northern populations of M. lucifugus, we sampled 1142 individuals across the species’ northern range. We used genotypes at 11 microsatellite loci to reveal the genetic structure of, and directional gene flow among, populations to predict the likely future spread of the pathogen in the northwest and to estimate effective population size (Ne). We also pyrosequenced the DRB1-like exon 2 of the class II major histocompatibility complex (MHC) in 160 individuals to explore immunogenetic selection by WNS. We identified three major neutral genetic clusters: Eastern, Montane Cordillera (and adjacent sampling areas), and Haida Gwaii, with admixture at intermediate areas and significant substructure west of the prairies. Estimates of Ne were unexpectedly low (289–16 000). Haida Gwaii may provide temporary refuge from WNS, but the western mountain ranges are not barriers to its dispersal in M. lucifugus and are unlikely to slow its spread. Our major histocompatibility complex (MHC) data suggest potential selection by WNS on the MHC, but gene duplication limited the immunogenetic analyses. - OPEN ACCESS
- Jenny L. McCune,
- Sheila R. Colla,
- Laura E. Coristine,
- Christina M. Davy,
- D.T. Tyler Flockhart,
- Richard Schuster, and
- Diane M. Orihel
Pollution is a pervasive, albeit often invisible, threat to biodiversity in Canada. Currently, the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) relies on expert opinion to assess the scope (i.e., the proportion of a species’ population that may be affected) of pollution to species at risk. Here, we describe a spatially explicit, quantitative method for assessing the scope of pollution as a threat to species at risk in Canada. Using this method, we quantified the geographic co-occurrence of 488 terrestrial and freshwater species and pollution sources and determined that, on average, 57% of the mapped occurrences of each species at risk co-occurred with at least one pollution source. Furthermore, we found a weak correlation between the scope of the threat of pollution as assessed by COSEWIC expert panels and the geographic overlap of species occurrences and pollution sources that we determined with our quantitative method. Experts frequently identified scope of pollution as absent or negligible even for species with extensive co-occurrence with pollution sources, especially vascular plants. Clearly, a quantitative approach is needed to make accurate estimates of the scope of pollution as a threat to species at risk in Canada. - OPEN ACCESS
- Alexandra M. Anderson,
- Catherine B. Jardine,
- J.R. Zimmerling,
- Erin F. Baerwald, and
- Christina M. Davy
Understanding the relationship between the height of wind turbines and wildlife fatalities is important for informing and mitigating wildlife collisions as ever taller and denser arrays of wind turbines are erected across the landscape. We examined relationships between turbine height and fatalities of bats and swallows at 811 turbines in Ontario, Canada, ranging from 119 to 186 m tall. We accounted for cut-in speeds, operational mitigation, and taller turbines projecting carcasses farther from the turbine base than shorter turbines. Fatalities of hoary bats (Lasiurus cinereus Palisot de Beauvois, 1796), silver-haired bats (Lasionycteris noctivagans Le Conte, 1831), and big brown bats (Eptesicus fuscus Palisot de Beauvois, 1796) increased with increased maximum blade height of turbines. In contrast, fatalities of little brown bat (Myotis lucifugus Le Conte, 1831) and eastern red bat (Lasiurus borealis Müller, 1776) decreased with increased turbine height. Fatalities of purple martins (Progne subis Linnaeus, 1758) and tree swallows (Tachycineta bicolor Vieillot, 1808) were higher at taller turbines than shorter turbines. However, fatalities of cliff swallow (Petrochelidon pyrrhonota Vieillot, 1817) and barn swallow (Hirundo rustica Linnaeus, 1758) were not associated with turbine height. Our results suggest that varying flight height among species may be one factor affecting collision risk.