Applied Filters
- Article
- Li, ShaorongRemove filter
Journal Title
Topics
Publication Date
Author
- Miller, Kristina M4
- Kaukinen, Karia H3
- Tabata, Amy3
- Di Cicco, Emiliano2
- Mordecai, Gideon2
- Bass, Arthur L1
- Bateman, Andrew W1
- Connors, Brendan M1
- Deeg, Christoph M1
- Esenkulova, Svetlana1
- Ferguson, Hugh W1
- Günther, Oliver P1
- Hinch, Scott G1
- Kanzeparova, Albina N1
- Laurin, Emilie1
- Ming, Tobi J1
- Mordecai, Gideon J1
- Neville, Chrys1
- Patterson, David A1
- Rondeau, Eric B1
- Schulze, Angela1
- Schulze, Angela D1
- Somov, Alexei A1
- Staton, Benjamin A1
Access Type
1 - 4of4
Save this search
Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Filters
Search Name | Searched On |
---|---|
[Paper Type: Article] AND [Author: Moher, David] (3) | 26 Mar 2025 |
[Paper Type: Article] AND [Author: Li, Shaorong] (4) | 26 Mar 2025 |
[Paper Type: Article] AND [Author: Hall, Britt D] (3) | 26 Mar 2025 |
[Paper Type: Article] AND [Author: Chan, Hing Man] (3) | 26 Mar 2025 |
[Paper Type: Article] AND [Author: Ban, Natalie C] (6) | 26 Mar 2025 |
You do not have any saved searches
- OPEN ACCESS
- Krishna K. Thakur,
- Raphaël Vanderstichel,
- Shaorong Li,
- Emilie Laurin,
- Strahan Tucker,
- Chrys Neville,
- Amy Tabata, and
- Kristina M. Miller
Infectious diseases are likely contributing to large-scale declines in chinook salmon stocks in the Pacific Northwest, but the specific agents and diseases involved, and the prevalences in migratory salmon, are mostly unknown. We applied a high-throughput microfluidics platform to screen for 45 infectious agents in 556 out-migrating juvenile chinook salmon, collected from freshwater (FW) and saltwater (SW) locations in the Cowichan River system on Vancouver Island, Canada, during 2014. Nineteen agents (5 bacterial, 2 viral, and 12 parasitic) were detected, with prevalences ranging from 0.2% to 57.6%. Co-infections between Candidatus Branchiomonas cysticola Toenshoff, Kvellestad, Mitchell, Steinum, Falk, Colquhoun & Horn, 2012, Paranucleospora theridion Nylund, Nylund, Watanabe, Arnesen & Kalrsbakk, 2010, and gill chlamydia, all associated with gill disease, were observed in SW samples. We detected agents known to cause large-scale mortalities in Pacific salmon (Ceratonova shasta (Noble, 1950), Parvicapsula minibicornis Kent, Whitaker & Dawe, 1977), and agents only recently reported in Pacific salmon in BC (Ca. B. cysticola, P. theridion, Facilispora margolisi Jones, Prosperi-Porta & Kim, 2012 and Parvicapsula pseudobranchicola Karlsbakk, Saether, Hostlund, Fjellsoy & Nylund, 2002). Wild and hatchery fish were most divergent in agent profiles in FW, with higher agent diversity in wild fish. Differences in prevalence largely dissipated once they converged in the marine environment, although hatchery fish may be infected by a greater diversity of agents sooner after ocean entry by virtue of their more rapid migration from nearshore to offshore environments. - OPEN ACCESS
- Emiliano Di Cicco,
- Hugh W. Ferguson,
- Karia H. Kaukinen,
- Angela D. Schulze,
- Shaorong Li,
- Amy Tabata,
- Oliver P. Günther,
- Gideon Mordecai,
- Curtis A. Suttle, and
- Kristina M. Miller
Piscine orthoreovirus Strain PRV-1 is the causative agent of heart and skeletal muscle inflammation (HSMI) in Atlantic salmon (Salmo salar Linnaeus, 1758). Given its high prevalence in net pen salmon, debate has arisen on whether PRV poses a risk to migratory salmon, especially in British Columbia (BC) where commercially important wild Pacific salmon are in decline. Various strains of PRV have been associated with diseases in Pacific salmon, including erythrocytic inclusion body syndrome (EIBS), HSMI-like disease, and jaundice/anemia in Japan, Norway, Chile and Canada. We examined the developmental pathway of HSMI and jaundice/anemia associated with PRV-1 in farmed Atlantic and chinook (Oncorhynchus tshawytscha (Walbaum, 1792)) salmon in BC, respectively. In situ hybridization localized PRV-1 within developing lesions in both diseases. The two diseases showed dissimilar pathological pathways, with inflammatory lesions in heart and skeletal muscle in Atlantic salmon and degenerative-necrotic lesions in kidney and liver in chinook salmon, plausibly explained by differences in PRV load tolerance in red blood cells. Viral genome sequencing revealed no consistent differences in PRV-1 variants intimately involved in the development of both diseases suggesting that migratory chinook salmon may be at more than a minimal risk of disease from exposure to the high levels of PRV occurring in salmon farms. - OPEN ACCESS
- Christoph M. Deeg,
- Albina N. Kanzeparova,
- Alexei A. Somov,
- Svetlana Esenkulova,
- Emiliano Di Cicco,
- Karia H. Kaukinen,
- Amy Tabata,
- Tobi J. Ming,
- Shaorong Li,
- Gideon Mordecai,
- Angela Schulze, and
- Kristina M. Miller
Salmon are keystone species across the North Pacific, supporting ecosystems, commercial opportunities, and cultural identity. Nevertheless, many wild salmon stocks have experienced significant declines. Salmon restoration efforts focus on fresh and coastal waters, but little is known about the open ocean environment. Here we use high throughput RT-qPCR tools to provide the first report on the health, condition, and infection profile of coho, chum, pink, and sockeye salmon in the Gulf of Alaska during the 2019 winter. We found lower infectious agent number, diversity, and burden compared with coastal British Columbia in all species except coho, which exhibited elevated stock-specific infection profiles. We identified Loma sp. and Ichthyophonus hoferi as key pathogens, suggesting transmission in the open ocean. Reduced prey availability, potentially linked to change in ocean conditions due to an El Niño event, correlated with energetic deficits and immunosuppression in salmon. Immunosuppressed individuals showed higher relative infection burden and higher prevalence of opportunistic pathogens. We highlight the cumulative effects of infection and environmental stressors on overwintering salmon, establishing a baseline to document the impacts of a changing ocean on salmon. - OPEN ACCESS
- Arthur L. Bass,
- Andrew W. Bateman,
- Brendan M. Connors,
- Benjamin A. Staton,
- Eric B. Rondeau,
- Gideon J. Mordecai,
- Amy K. Teffer,
- Karia H. Kaukinen,
- Shaorong Li,
- Amy M. Tabata,
- David A. Patterson,
- Scott G. Hinch, and
- Kristina M. Miller
Recent decades have seen an increased appreciation for the role infectious diseases can play in mass mortality events across a diversity of marine taxa. At the same time many Pacific salmon populations have declined in abundance as a result of reduced marine survival. However, few studies have explicitly considered the potential role pathogens could play in these declines. Using a multi-year dataset spanning 59 pathogen taxa in Chinook and Coho salmon sampled along the British Columbia coast, we carried out an exploratory analysis to quantify evidence for associations between pathogen prevalence and cohort survival and between pathogen load and body condition. While a variety of pathogens had moderate to strong negative correlations with body condition or survival for one host species in one season, we found that Tenacibaculum maritimum and Piscine orthoreovirus had consistently negative associations with body condition in both host species and seasons and were negatively associated with survival for Chinook salmon collected in the fall and winter. Our analyses, which offer the most comprehensive examination of associations between pathogen prevalence and Pacific salmon survival to date, suggest that pathogens in Pacific salmon warrant further attention, especially those whose distribution and abundance may be influenced by anthropogenic stressors.