Volume 3 • October 2018
Perspectives
OPEN ACCESS
Aspects of Canada’s health regulatory system are currently being reviewed. This is timely, as the regulation and definition of drugs, foods, and natural health products (NHPs) is in need of revision to facilitate greater transparency and less ambiguity. A number of studies have illustrated the importance of a nutritious diet to prevent and manage chronic disease. Therefore, legislation surrounding food health claims needs to be adjusted so that it is more informative for disease prevention and, in some cases, treatment. Canada is modernizing the regulation of self-care products, under which NHPs, including probiotic products, are listed. With the growing appreciation for the role that microbes play in human health and the recognition that many foods, including those containing probiotic organisms, can prevent or mitigate disease, this provides an opportunity to reassess regulatory categories.
OPEN ACCESS
The identification of sustainably managed fisheries is problematic for marketers and consumers of Pacific salmon food products owing to lack of well-defined and robust criteria that take into account current ecosystem science of salmon. We present the rationale for an alternative conceptual framework for salmon management that supports the development of sustainable sourcing criteria. Our approach contrasts with current large-scale fisheries certification programs such as that of the Marine Stewardship Council (MSC) and general consumer recommendation services such as Monterey Bay Aquarium’s Seafood Watch (SFW) program. Our framework is based on the “place-based” character of salmon populations and recognition of fundamental aspects of salmon ecology, particularly the evolution of population life histories that are locally adapted to freshwater spawning and rearing habitats. We describe how this framework underpins development of science-based sourcing criteria and how it differs in important respects from the industrial approach that historically and currently is the basis for most salmon management. We conclude with a discussion of how the framework and its application may provide a model for redirecting salmon management, in general, towards a more science- and place-based approach and why that is likely to be sustainable in the long term in a way that most contemporary salmon management is not.
Articles
OPEN ACCESS
Objectives: This work aims to assess changes in brain-derived neurotrophic factor (BDNF) levels in women after the practice of a specific short duration 10-session aquatic physical therapy protocol in patients with fibromyalgia (FB). Methods: Case–control study. Thirteen women diagnosed with FB and 11 controls with the same age group, 35–55 years. Patients were evaluated according to the visual analog scale of pain and the fibromyalgia impact questionnaire (FIQ). All were subjected to a short protocol totaling 10 sessions of 40 min twice a week for five weeks. Heart rate and pain were monitored. BDNF levels were measured using enzyme immunoassay. Results: A statistically significant increase in BDNF values was noted in patients with FB between the pre- and post-10th session assessments (mean of 35.52–41.96; p = 0.041). Conclusion: BDNF values may present fluctuations during a short duration moderate aerobic exercise protocol, when measured and analyzed in a longitudinal design. Further studies with a more frequent BDNF evaluation could help in understanding its behavior more accurately and are warranted.
OPEN ACCESS
In this study, we examined the effects of dissolved oxygen, via metrics based on hourly measurements, and other environmental variables on invertebrate assemblages in estuaries spanning a gradient of nutrient loading and geography in the southern Gulf of St. Lawrence, Canada. Upper areas (15–25 practical salinity units (PSU)) of 13 estuaries that were dominated by either seagrass (Zostera marina Linnaeus, 1753) or macroalgae (Ulva spp. Linnaeus, 1753) were sampled from June to September 2013. Macroinvertebrate assemblages from Z. marina were found to be distinct from Ulva assemblages for both epifauna and infauna. Small snails dominated each vegetation type, specifically cerithids in Z. marina and hydrobids in Ulva. Although Z. marina had higher species richness, approximately 70% of species were common to both habitats. Faunal communities differed among estuaries with large, within-estuary, temporal variance only observed at Ulva sites impacted by hypoxia and particularly at sites with long water residence time. Indeed, abundances varied by several orders of magnitude in Ulva ranging from zero to thousands of macroinvertebrates. There was a strong negative correlation between hypoxic or anoxic water, 48 h prior to sampling, with relative abundances of amphipods, and a positive correlation with the relative abundances of snails. As one of the first studies to use high-frequency oxygen monitoring, this study revealed probable impacts and the transient nature of hypoxia in eutrophication.
OPEN ACCESS
Distinguishing between intra- and inter-specific variation in genetic studies is critical to understanding evolution because the mechanisms driving change among populations are expected to be different than those that shape reproductive isolation among lineages. Genetic studies of north Atlantic green sea urchins Strongylocentrotus droebachiensis (Müller, 1776) have detected significant population substructure and asymmetric gene flow from Europe to Atlantic Canada and interspecific hybridization between S. droebachiensis and Strongylocentrotus pallidus (Sars, 1871). However, combined with patterns of divergence at mtDNA sequences, morphological divergence at gamete traits suggests that the European and North American lineages of S. droebachiensis may be cryptic species. Here, we use a combination of cytochrome c oxidase subunit I (COI) sequences and single nucleotide polymorphisms (SNPs) to test for cryptic species within Strongylocentrotus sea urchins and hybrids between S. droebachiensis and S. pallidus populations. We detect striking patterns of habitat and reproductive isolation between two S. droebachiensis lineages, with offshore deep-water collections consisting of S. pallidus in addition to a cryptic lineage sharing genetic similarity with previously published sequences from eastern Atlantic S. droebachiensis. We detected only limited hybridization among all three lineages of sea urchins, suggesting that shared genetic differences previously reported may be a result of historical introgression or incomplete lineage sorting.
OPEN ACCESS
The sensory system of animals detects a massive and unknown array of chemical cues that evoke a diversity of physiological and behavioural responses. One group of nitrogen-containing carbon ring chemicals—nucleobases—are thought to be involved in numerous behaviours yet have received little attention. We took a top-down approach to examine responses evoked by nucleobases at behavioural, tissue, and gene expression levels. Fish generally avoided nucleobases, and this behaviour, when observed, was driven by purines but not pyrimidines. At the tissue level, olfactory neuron generator potential responses tended to be concentration specific and robust at concentrations lower than amino acid detection ranges. In terms of gene expression, more than 2000 genes were significantly upregulated following nucleobase exposure, some of which were expected (e.g., genes involved in purine binding) and some of which were not (e.g., tubulin-related genes). Humanized RNA pathway analysis showed that we had exposed the animal to a nucleobase. Our data indicate that responses to nucleobase-containing compounds may be highly structure based and are evident from changes in behaviour to mRNA expression. Many of these responses were surprising, and all provide numerous routes for further research endeavour.
OPEN ACCESS
Wastewater treatment plants (WWTPs) have been identified as hotspots for antimicrobial resistance genes (ARGs) and thus represent a critical point where patterns in ARG abundances can be monitored prior to their release into the environment. The aim of the current study was to measure the impact of the release of the final treated effluent (FE) on the abundance of ARGs in the receiving water of a recently upgraded WWTP in the Canadian prairies. Sample nutrient content (phosphorous and nitrogen species) was measured as a proxy for WWTP functional performance, and quantitative PCR (qPCR) was used to measure the abundance of eight ARGs, the intI1 gene associated with class I integrons, and the 16S rRNA gene. The genes ermB, sul1, intI1, blaCTX-M, qnrS, and tetO all had higher abundances downstream of the WWTP, consistent with the genes with highest abundance in the FE. These findings are consistent with the increasing evidence suggesting that human activity affects the abundances of ARGs in the environment. Although the degree of risk associated with releasing ARGs into the environment is still unclear, understanding the environmental dimension of this threat will help develop informed management policies to reduce the spread of antibiotic resistance and protect public health.
OPEN ACCESS
Mercury (Hg) in wildlife remains of great concern, especially for apex piscivores. Despite this, exposure information from many species in many areas is lacking, so that management decisions are hampered. Here we examine Hg concentrations in fur, liver, and kidney tissues from river otters (Lontra canadensis (Schreber, 1777)) (n = 203) to quantify existing Hg concentrations over a broad geographic area in Saskatchewan. Mean fur total Hg (THg) (9.68 ± 7.52 mg/kg fresh weight (f.w.)) was significantly correlated with THg and organic Hg (OHg) in liver and kidney tissue, showcasing the potential for using fur as a noninvasive method of monitoring Hg in top-level mammals. Livers of males had higher mean OHg concentrations than livers of females (males: 2.71 mg/kg d.w., females: 1.87 mg/kg d.w.), but not significantly so. No sex-related differences were observed in kidney OHg concentrations. THg concentrations in otter fur collected in the Boreal Shield ecozone (Churchill River Upland) were significantly higher (mean = 16.1 mg/kg f.w.) than in otter fur collected from the Boreal Plain ecozone (mean = 8.59 mg/kg f.w.). Fur from otters (n = 20; trapping block N66) trapped near a decommissioned smelter contained the highest concentrations of THg in the study (mean = 18.4 mg/kg f.w.).
OPEN ACCESS
The Prairie Pothole Region (PPR) in the northern Great Plains is an area of ecological significance, serving as an important breeding site for avian wildlife. However, organisms feeding within the PPR may be at risk of mercury (Hg) exposure due to deposition of anthropogenic emissions and the high Hg methylation potential of PPR wetlands. We quantified Hg concentrations in red-winged blackbirds’ (Agelaius phoeniceus (Linnaeus, 1766); RWBLs) blood, feathers, and eggs in the spring and summer breeding season and compared our values with those from RWBLs sampled from ecoregions across North America. Hg concentrations in whole water, aeshnid dragonfly nymphs, and RWBL tissues varied by wetland and were below those considered to elicit acute effects in wildlife, and egg total Hg (THg) concentrations were significantly related to spring whole water methylmercury concentrations. Only RWBL blood THg concentrations showed a clear increase in summer compared with spring, resulting in decoupling of summer blood and feather THg concentrations. Moreover, blood THg concentrations varied by ecoregion, with those impacted by an industrial point source exhibiting high Hg levels. Our study emphasizes that tissue renewal time as well as ecological factors such as competition and diet shifts are important considerations when using RWBLs to assess biological Hg exposure.
OPEN ACCESS
A distributed optical strain-sensing technique is presented as a solution for measuring the strain distribution along ground support members used in tunnelling and mining works. The technique employs a Rayleigh optical frequency domain reflectometry technology, which measures strain at a spatial resolution of 0.65 mm along the length of a standard optical fiber. A rationale for selecting this technology as a potential monitoring technique for ground support elements over alternative commercially available technologies is discussed. The development of a technique to couple optical fiber sensors with rock bolt, umbrella arch, and cable bolt support members is also demonstrated. A robust laboratory investigation of such optically instrumented support members demonstrated the capability of the technique to capture the expected in situ support behaviour in the form of coaxial, lateral, and shear loading arrangements as would be anticipated in the field. Moreover, the micro-scale data obtained by this optical sensing technique are shown to provide unprecedented insight into the local/micro-scale geomechanistic complexities associated with the bearing capacity of ground support members, especially when compared with data obtained by discrete strain-sensing technologies.
OPEN ACCESS
Life satisfaction is directly related to positive mental and physical health outcomes. As such, the promotion of life satisfaction is desirable. To facilitate this process, it is beneficial to identify significant predictors of life satisfaction. Although previous research has established that personality is a reliable predictor of life satisfaction, personality is not easily modifiable. In contrast, perfectionism can be effectively adapted with appropriate therapy, leading to decreases in mental illness symptomology. The present study sought to determine if different aspects of perfectionism predicted life satisfaction beyond the influence of personality. A total of 448 online participants (75% female) completed questionnaires assessing life satisfaction, perfectionism, and personality. Results of a hierarchical multiple regression analysis revealed that lower scores on neuroticism (being emotionally stable; p < 0.001) and higher scores on extraversion (p < 0.001) and conscientiousness (p = 0.003) significantly predicted life satisfaction. In addition, one aspect of perfectionism, high standards for others (p = 0.001), positively predicted life satisfaction beyond the influence of personality. We suggest that encouraging individuals to hold others to high standards is an effective strategy that may foster shared goals and achievements, which in turn may improve overall life satisfaction.
OPEN ACCESS
To assess the effects of housing characteristics and home environmental factors on lung function of Chinese children, 6740 children (aged 6–16 years) were recruited from seven cities in Northeast China in 2012. Performance of lung function was determined by comparison of forced vital capacity (FVC), forced expiratory volume (FEV1), peak expiratory flow (PEF), and maximal mid-expiratory flow (MMEF). Multivariate regression models were used to evaluate the associations with lung function deficit. The results showed that housing conditions were associated with lung function deficit in children. The adjusted odds ratios were 0.47 (95% CI: 0.26–0.83) for FVC for “ping-fang” housing compared with “dan-yuan-lou-fang” housing and 2.90 (95% CI: 2.43–3.47) for FEV1 with home renovations completed within two years compared with counterparts. The linear regression models consistently showed a significant association of housing conditions and home environmental factors with lung function measurements across subjects. A residence taller than seven stories was negatively associated with FEV1 (β = −55; 95% CI: −97 to −13). In conclusion, housing conditions and home environmental factors are particularly important to the development of lung function and respiratory health in children. These factors are concerning and action should be taken to improve them.
OPEN ACCESS
In 1956, Shell Oil Company geologist M. King Hubbert published a model for the growth and decline over time of the production rates of oil extracted from the land mass of the continental US. Employing an estimate for the amount of ultimately recoverable oil and a logistic curve for the oil production rate, he accurately predicted a peak in US oil production for 1970. His arguments and the success of his prediction have been much celebrated, and the original paper has 1400 publication citations to date. The theory of “peak oil” (and subsequently, of natural resource scarcity in general) has consequently become associated with Hubbert and “Hubbert” curves and models. However, his prediction for the timing of a world peak oil production rate and the subsequent predictions of many others have proven inaccurate. We revisit the Hubbert model for oil extraction and provide an analysis of it and several variants in the language of (time) autonomous differential equations.
OPEN ACCESS
An increase in greenhouse gas emissions has led to a rise in average global air and ocean temperatures. Increased sea surface temperatures can cause changes in species’ distributions, particularly those species close to their thermal tolerance limits. We use a bioclimate envelope approach to assess potential shifts in the range of marine macroalgae harvested in North American waters: rockweed (Fucus vesiculosus Linnaeus, 1753), serrated wrack (Fucus serratus Linnaeus, 1753), knotted wrack (Ascophyllum nodosum (Linnaeus) Le Jolis, 1863), carrageen moss (Chondrus crispus Stackhouse, 1797), and three kelp species (Laminaria digitata (Hudson) J.V. Lamouroux, 1813; Saccharina latissima (Linnaeus) C.E. Lane, C. Mayes, Druehl et G.W. Saunders, 2006; and Saccharina longicruris (Bachelot de la Pylaie) Kuntze, 1891). We determined species’ thermal limits from the current sea surface temperatures associated with their geographical distributions. Future distributions were based on sea surface temperatures projected for the year ∼2100 by four atmosphere-ocean general circulation models and earth system models for regional concentration pathways (RCPs) 4.5 and 8.5. Future distributions based on RCP 8.5 indicate that the presence of all but rockweed (F. vesiculosus) is likely to be threatened by warming waters in the Gulf of St. Lawrence and along the Atlantic coast of Nova Scotia. Range retractions of macroalgae will have significant ecological and economic effects including impacts on commercial fisheries and harvest rates and losses of floral and faunal biodiversity and production, and should be considered in the designation of marine protected areas.
OPEN ACCESS
Modern zoos and aquariums aspire to contribute significantly to biodiversity conservation and research. For example, conservation research is a key accreditation criterion of the Association of Zoos and Aquariums (AZA). However, no studies to date have quantified this contribution. We assessed the research productivity of 228 AZA members using scientific publications indexed in the ISI Web of Science (WoS) database between 1993 and 2013 (inclusive). AZA members published 5175 peer-reviewed manuscripts over this period, with publication output increasing over time. Most publications were in the zoology and veterinary science subject areas, and articles classified as “biodiversity conservation” by WoS averaged 7% of total publications annually. From regression analyses, AZA organizations with larger financial assets generally published more, but research-affiliated mission statements were also associated with increased publication output. A strong publication record indicates expertise and expands scientific knowledge, enhancing organizational credibility. Institutions aspiring for higher research productivity likely require a dedicated research focus and adequate institutional support through research funding and staffing. We recommend future work build on our results by exploring links between zoo and aquarium research productivity and conservation outcomes or uptake.
OPEN ACCESS
Type 1 diabetes (T1DM) is known to cause an increase in reactive oxygen species (ROS) and elevated intracellular glucose levels. We investigated the metallothionein I and II (MT I+II) antioxidants expression in soleus (mainly slow-twitch) and plantaris (predominantly fast-twitch) skeletal muscle using a rodent model of streptozotocin-induced diabetes. The presence of oxidative stress was confirmed by the detection of increased levels of protein carbonyl formation in the diabetic tissues. DAB (3,3′-diaminobenzidine) immunostaining and Western blotting analyses demonstrated that MT I+II expression was significantly upregulated in the diabetic soleus and plantaris muscle tissues compared with their respective controls. Moreover, no significant difference was detected between the plantaris and soleus controls or between the plantaris and soleus diabetic tissues. These findings suggest that there is an increase in MT protein expression in the soleus and plantaris muscles associated with the induction of T1DM. A better understanding of the molecular mechanisms that allow MT to prevent the oxidative stress associated with diabetes could lead to a novel therapeutic strategy for this chronic disease and its associated complications.
OPEN ACCESS
Effective policies promoting diversity in geoscience require understanding of how the values and practices of the community support the inclusion of different social groups. As sites of knowledge exchange and professional development, academic conferences are important culturing institutions that can alleviate or reproduce barriers to diversity in geoscience. This study examines diversity at a 2017 geoscience conference, the joint Canadian Geophysical Union and Canadian Society of Agricultural and Forest Meteorology annual meeting, through observation of participation, presentation content, and behaviour in conference sessions. Across 256 observed presentations, women constituted 28% of speakers, whereas women of colour made up only 5%. Participation rates differed between disciplinary sections, with the most populous sessions (Hydrology and Earth Surface) having the lowest percentage of women. Examination of presentation content reveals that the methods and scholarly contributions of both women and people of colour differed from the majority, suggesting an intellectual division of labour in geoscience. Examination of audience behaviours between presenters reveals how a “chilly climate” can be experienced by women and other marginalized demographics in conferences. We argue that there is more to be done than simply increasing numbers of women or other minorities in geoscientific spaces, and we suggest pathways to making geoscience a more inclusive and democratic pursuit.
OPEN ACCESS
Innovative, highly processed foods are often designed to “substitute” for traditional, less-processed items in the diet. Yet, concerns about the unhealthfulness of diets high in highly processed foods are growing. Their dominance in the diet has been hypothesized to relate, in part, to the strategic use of on-package nutrition promotion. Our goal was to compare front-of-package (FOP) labelling on highly processed products that appear to have been explicitly designed as substitutes for traditional foods with the FOP labelling on their traditional counterparts. FOP references were recorded from packaged foods in three major Toronto grocery stores (N = 20520). Foods were categorized as substitute or traditional counterparts if these had (1) immediate interchangeability within the diet, (2) inherently different formulation, and (3) the substitute was more heavily processed than its traditional counterpart. Eight substitute–traditional pairs were identified, comprising 18% of products in the data set. Substitute foods were more likely than traditional products to bear FOP nutrition, “organic”, and “natural” references. Substitute foods bore 1.21 times more FOP references, the majority of which highlighted nutrients inherent to the traditional counterpart. Our findings support the contention that highly processed foods may be displacing less-processed foods at least in part through the use of strategic on-package marketing.
OPEN ACCESS
Nickel (Ni) leaching from oil sands petroleum coke can have toxicological effects on aquatic organisms. However, geochemical controls on Ni release, transport, and attenuation within coke deposits remains limited. We examined the geochemistry of fluid coke and associated pore waters from two deposits at an oil sands mine near Fort McMurray, Alberta, Canada. Synchrotron-based micro-X-ray fluorescence (μXRF) and micro-X-ray absorption near edge structure (μXANES) spectroscopy show that Ni(II)-porphyrin complexes dominate, but inorganic phases including Ni(II)-sulfide and Ni(II)-oxide comprise a minor component of fluid coke. Sequential chemical extractions suggested that sorption–desorption reactions may influence Ni mobility within fluid coke deposits. Although only a small proportion of total Ni (<4%) is susceptible to leaching under environmentally relevant concentrations, dissolved Ni concentrations (n = 65) range from 2 to 120 μg·L−1 (median 7.8 μg·L−1) within the two deposits and generally decrease with depth below the water table. Pore water Ni concentrations are negatively correlated with pH, but not with dissolved sulfate, bicarbonate, or chloride. Overall, our findings suggest that pore water pH and sorption–desorption reactions are principal controls on dissolved Ni concentrations within oil sands fluid petroleum coke deposits.
OPEN ACCESS
The measurement of statistical evidence is of considerable current interest in fields where statistical criteria are used to determine knowledge. The most commonly used approach to measuring such evidence is through the use of p-values, even though these are known to possess a number of properties that lead to doubts concerning their validity as measures of evidence. It is less well known that there are alternatives with the desired properties of a measure of statistical evidence. The measure of evidence given by the relative belief ratio is employed in this paper. A relative belief multiple testing algorithm was developed to control for false positives and false negatives through bounds on the evidence determined by measures of bias. The relative belief multiple testing algorithm was shown to be consistent and to possess an optimal property when considering the testing of a hypothesis randomly chosen from the collection of considered hypotheses. The relative belief multiple testing algorithm was applied to the problem of inducing sparsity. Priors were chosen via elicitation, and sparsity was induced only when justified by the evidence and there was no dependence on any particular form of a prior for this purpose.
OPEN ACCESS
Diethylnitrosamine (DEN) is a well-known carcinogen. The aim of our study was to determine the role of olive oil (7 g/kg) with fig (1 g/kg) (OF) and (or) date palm (1 g/kg) (D) fruit extracts during DEN treatment of male Wistar rats. The OF–DEN and (or) D–DEN groups were given oral antioxidants daily for two weeks before and during DEN treatment (21 weeks). The DEN-treated group showed dramatic results for all investigated parameters as compared with the control rats. All OF–DEN and D–DEN groups showed significant improvement in hepatic thiobarbituric acid reactive substances, reduced glutathione, and nitric oxide concentration in the liver tissue, in addition to improvement in serum vascular endothelial growth factor level, alpha-fetoprotein, lipid profile, lipid risk ratios, and the hematological parameters as compared with the DEN-treated group. In conclusion, the administration of OF and (or) D fruit extracts to DEN-treated rats resulted in a considerable improvement in the investigated biochemical and hematological parameters. In addition, the combined OFD treatments showed greater improvements revealing the synergistic effect of the combination.
OPEN ACCESS
Piscine orthoreovirus Strain PRV-1 is the causative agent of heart and skeletal muscle inflammation (HSMI) in Atlantic salmon (Salmo salar Linnaeus, 1758). Given its high prevalence in net pen salmon, debate has arisen on whether PRV poses a risk to migratory salmon, especially in British Columbia (BC) where commercially important wild Pacific salmon are in decline. Various strains of PRV have been associated with diseases in Pacific salmon, including erythrocytic inclusion body syndrome (EIBS), HSMI-like disease, and jaundice/anemia in Japan, Norway, Chile and Canada. We examined the developmental pathway of HSMI and jaundice/anemia associated with PRV-1 in farmed Atlantic and chinook (Oncorhynchus tshawytscha (Walbaum, 1792)) salmon in BC, respectively. In situ hybridization localized PRV-1 within developing lesions in both diseases. The two diseases showed dissimilar pathological pathways, with inflammatory lesions in heart and skeletal muscle in Atlantic salmon and degenerative-necrotic lesions in kidney and liver in chinook salmon, plausibly explained by differences in PRV load tolerance in red blood cells. Viral genome sequencing revealed no consistent differences in PRV-1 variants intimately involved in the development of both diseases suggesting that migratory chinook salmon may be at more than a minimal risk of disease from exposure to the high levels of PRV occurring in salmon farms.
OPEN ACCESS
Threespine stickleback (Gasterosteus aculeatus Linnaeus, 1758) exhibit a well-documented reduction in plate number associated with adaptation to freshwater environments. We tested the hypothesis that changes in plate number are accompanied by changes in plate bone mineral density and plate shape, reflecting the presence of a complex plate “armour” phenotype and a complex adaptive response to different selective pressures in changing habitats. We used traditional and novel morphometric techniques to characterize armour traits from stickleback occupying three marine habitats and one tidally influenced freshwater stream in southwestern British Columbia. Stickleback inhabiting marine environments share a conserved plate phenotype that includes a full complement of highly mineralized plates that exhibit a characteristic density profile along the plate. Stickleback inhabiting tidally influenced fresh water display an average reduction in plate number along with increased variation in number and reduced total mineralization despite maintenance of a marine-like density profile. Further, we found that although mineralization and armour shape are correlated with size, after accounting for size variation in both traits remains attributable to habitat. Our results hint at an important role for development in structuring phenotypic variation during the process of adaptive change in stickleback.
OPEN ACCESS
There have been strong calls for scientists to share their discoveries with society. Some scientists have heeded these calls through social media platforms such as Twitter. Here, we ask whether Twitter allows scientists to promote their findings primarily to other scientists (“inreach”), or whether it can help them reach broader, non-scientific audiences (“outreach”). We analyzed the Twitter followers of more than 100 faculty members in ecology and evolutionary biology and found that their followers are, on average, predominantly (∼55%) other scientists. However, beyond a threshold of ∼1000 followers, the range of follower types became more diverse and included research and educational organizations, media, members of the public with no stated association with science, and a small number of decision-makers. This varied audience was, in turn, followed by more people, resulting in an exponential increase in the social media reach of tweeting academic scientists. Tweeting, therefore, has the potential to disseminate scientific information widely after initial efforts to gain followers. These results should encourage scientists to invest in building a social media presence for scientific outreach.
OPEN ACCESS
Infectious diseases are likely contributing to large-scale declines in chinook salmon stocks in the Pacific Northwest, but the specific agents and diseases involved, and the prevalences in migratory salmon, are mostly unknown. We applied a high-throughput microfluidics platform to screen for 45 infectious agents in 556 out-migrating juvenile chinook salmon, collected from freshwater (FW) and saltwater (SW) locations in the Cowichan River system on Vancouver Island, Canada, during 2014. Nineteen agents (5 bacterial, 2 viral, and 12 parasitic) were detected, with prevalences ranging from 0.2% to 57.6%. Co-infections between Candidatus Branchiomonas cysticola Toenshoff, Kvellestad, Mitchell, Steinum, Falk, Colquhoun & Horn, 2012, Paranucleospora theridion Nylund, Nylund, Watanabe, Arnesen & Kalrsbakk, 2010, and gill chlamydia, all associated with gill disease, were observed in SW samples. We detected agents known to cause large-scale mortalities in Pacific salmon (Ceratonova shasta (Noble, 1950), Parvicapsula minibicornis Kent, Whitaker & Dawe, 1977), and agents only recently reported in Pacific salmon in BC (Ca. B. cysticola, P. theridion, Facilispora margolisi Jones, Prosperi-Porta & Kim, 2012 and Parvicapsula pseudobranchicola Karlsbakk, Saether, Hostlund, Fjellsoy & Nylund, 2002). Wild and hatchery fish were most divergent in agent profiles in FW, with higher agent diversity in wild fish. Differences in prevalence largely dissipated once they converged in the marine environment, although hatchery fish may be infected by a greater diversity of agents sooner after ocean entry by virtue of their more rapid migration from nearshore to offshore environments.
OPEN ACCESS
The goal of this study was to determine the possible beneficial effect of olive oil (7 g/kg) with fig (1 g/kg) and date palm fruit (1 g/kg) extracts (OFD) on the toxicity hazards of doxorubicin (DOX) and (or) γ-radiation. The DOX-treated groups received doses of 2.5 mg/kg body weight via intravenous (IV) injection weekly for four consecutive weeks. Rats in the irradiated groups were exposed to whole-body γ-radiation with fractioned doses of 2 Gy weekly for four consecutive weeks. The OFD-treated groups received two weeks of pretreatment with OFD and daily supplementation via oral gavage during the experimental period. The DOX-treated and (or) irradiated groups showed decreases in the antioxidant parameters (reduced glutathione and nitric oxide) as well as increased lipid peroxidation products. In addition, we observed changes in the lipid profile parameters, lipid risk ratios, and hematological values (erythrocyte (RBC) count, hemoglobin (Hb) concentration, hematocrit (Hct) percentage, platelet count, and total and differential leukocyte (WBC) count) in these groups compared with the control rats. The administration of OFD to DOX-treated and (or) irradiated rats significantly ameliorated the oxidative stress markers, lipid profile, risk ratios, and hematological parameters. In conclusion, OFD could be used synergistically to decrease the negative side effects of chemotherapy and radiotherapy.
OPEN ACCESS
Novel, non-invasive, painless oral therapeutic agents are needed to replace the painful conventional treatment of arsenic-associated health hazards with metal chelators. Our aim was to examine the effect of spirulina (Spirulina platensis (Geitler, 1925)) on arsenic-mediated uterine toxicity. Female Wistar rats were divided equally into four experimental treatment groups: control group, sodium arsenite group (1.0 mg/100 g body mass), spirulina placebo group (20 mg/100 g body mass), and sodium arsenite + spirulina group. In contrast with the control group, spectrophotometric and electrozymographic evaluation revealed that rats that ingested arsenic for 8 d showed significant diminution of the activities of superoxide dismutase, catalase, and peroxidase (p < 0.001). Mutagenic uterine DNA breakage and tissue damage were prominent following arsenic consumption by the rats. Oral delivery of spirulina resulted in a significant amelioration of arsenic-induced adverse oxidative stress and genotoxic state of rats. A significant low-signaling (p < 0.001) of gonadotropins and estradiol was also noted in the arsenic-treated rats, which was terminated by spirulina; this arsenic-primed adverse effect was significant (p < 0.05, p < 0.01). The spirulina treatment mechanism could be associated with augmentation of the antioxidant defense system that protects the arsenic-mediated pathological state of the uterus.
OPEN ACCESS
Honey bees (Apis mellifera Linnaeus, 1758) potentially rely on a variety of visual cues when searching for flowers in the environment. Both chromatic and achromatic (brightness) components of flower signals have typically been considered simultaneously to understand how flower colours have evolved. However, it is unclear whether honey bees actually use brightness information in their colour perception. We investigated whether free-flying honey bees can process brightness cues in achromatic stimuli when presented at a large visual angle of 28° to ensure colour processing. We found that green contrast (modulation of the green receptor against the background) and brightness contrast (modulation of all three receptors against the background) did not have a significant effect on the proportion of correct choices made by bees, indicating that they did not appear to use brightness cues in a colour processing context. Our findings also reveal that, even at a small visual angle, honeybees do not reliably process single targets solely based on achromatic information, at least considering values up to 60% modulation of brightness. We discuss these findings in relation to proposed models of bee colour processing. Therefore, caution should be taken when interpreting elemental components of complex flower colours as perceived by different animals.
OPEN ACCESS
Local, lay, and traditional ecological knowledge (LTK) is widely discussed in academic studies of climatic and environmental change. Here, we report on a systematic literature review that examines the role of such factors as gender, age, and scholarly networks in shaping LTK research. We focused on research in the circumpolar North, where LTK research has been ongoing for at least four decades. We explored how recruitment approaches and research methods can circumscribe local expertise and found that much of the literature fails to adequately report sampling and participant demographics. There is an apparent bias towards male knowledge-holders, usually hunters and Elders, over women and youth. Studies were largely led by male authors, and male authors outnumbered female authors 2:1. We also identified two potential “invisible colleges” in the literature—communities of practice linked by one or a few authors. We discuss our findings through the lens of “intersectionality”, which captures how power differences at play within communities, whether around age or gender or some other social categorization, contribute to the creation of multiple kinds of knowledge. We conclude with a discussion of how we can improve this area of research by challenging assumptions and collaborating with a wider range of individuals.
OPEN ACCESS
Mercury (Hg) and polycyclic aromatic hydrocarbons (PAHs) are global pollutants known for their toxicity to wildlife. Because of their trophic position, common loons (Gavia immer (Brünnich 1764)) are excellent indicators of environmental quality. In 2014 and 2015, tissue samples of ten adult common loons (plus one recapture) were obtained in Meadow Lake Provincial Park, Saskatchewan, and assessed for Hg and PAH exposure. Blood and feather levels of these contaminants are indicative of exposure during breeding and in wintering areas, respectively. Compared with an international Hg database, blood Hg levels were low (<1 μg/g). In most loons (90.5%, 10 out of 11), blood PAH concentrations were also low (<10 ng/g), but high (120 ng/g) for one individual (9.5% 1 out of 11). Feather PAH concentrations were high (95.9 ng/g and 250.6 ng/g) in two of the four loons (50%) caught in 2015. These data indicate that loons breeding in Meadow Lake Provincial Park were exposed to low levels of Hg; however, some individuals are being exposed to PAHs in both their breeding and wintering locations. The effect of these environmental pollutants on individual loon fitness is unclear, but because of their extreme toxicity in biological systems we suggest that future monitoring in the surrounding region is warranted.
OPEN ACCESS
We examined how Arctic spider (Araneae) biodiversity is distributed at multiple spatial scales in northern Canada using a standardized hierarchical sampling design. We investigated which drivers, environmental or spatial, influence the patterns observed. Spatial patterns of Arctic spider species richness and composition were assessed in 12 sites located in arctic, subarctic, and north boreal ecoclimatic regions, spanning 30 degrees of latitude and 80 degrees of longitude. Variation in diversity was partitioned in relation to multiple environmental and spatial drivers of diversity patterns. Over 23 000 adult spiders, representing 306 species in 14 families, were collected in northern Canada, with 107 species (35% of the total species collected) representing new territorial or provincial records. Spider diversity was structured at the regional scale across ecoclimatic regions but was not structured with latitude. Longitudinal patterns of spider diversity across Canada may be explained by post-glacial dispersal. At local scales, diversity was non-randomly distributed and possibly limited by biotic interactions. We recommend the use of ecoclimatic regions as a framework for conservation of biodiversity in northern Canada and spiders as useful bioindicators that can help us understand the effects of climate change across ecoclimatic regions of northern Canada.
OPEN ACCESS
Organic waste, which contains essential plant nutrients such as phosphorus, constitutes 30%–50% of municipal solid waste in developed countries. Unfortunately, much of this resource is buried in landfills or incinerated. Many jurisdictions have, therefore, adopted the diversion of organic waste and the recycling of nutrients as policy goals. We used data sets from Europe and Ontario, Canada, to explore the impact of socio-economic and management factors on the rates of organic waste diversion and examined the effect of this diversion on phosphorus recycling. Organic diversion rates were highly correlated with income in Europe and with infrastructure, such as source-separated organic waste collection, in Ontario. Significant correlations were also observed between diversion rates and the use of policy instruments such as economic incentives, legislative organic waste bans, and curbside bag limits. We estimated that 39%–63% of the phosphorus in diverted organics is returned to arable land. Ultimately, we found that although socio-economic factors influence the success of organic waste diversion, policies, accessible infrastructure, economic incentives, and legislative requirements can be leveraged to improve the recycling rate of organic waste and the nutrients they contain.
OPEN ACCESS
The Canadian Environmental Protection Act (CEPA) enables the Minister of Environment and Climate Change to develop policy to curtail international air pollution. However, regional air pollution generated during the manufacturing of products outside of Canada is not addressed in CEPA. Using cement manufacturing in China as a case study, three policy options were devised to manage export-based regional air pollution. The options investigated included Policy 1—an open border with direct support for domestic cement manufacturers, Policy 2—a restricted border with no support for domestic cement manufacturers, and Policy 3—a selective border with partial support for domestic cement manufacturers. An analytic hierarchy process, in conjunction with the three actionable solidarities of cultural theory, was applied to the policy options and their supporting mechanisms. Results indicated that Policy 3 was strongly favoured (52.5%), followed by Policy 2 (33.4%), with Policy 1 being the least favoured (14.2%). Regarding policy mechanisms, a verification process was preferred by all three solidarities. From the standpoint of a universal approach to trade it is recommended that an air quality agreement between China and Canada under CEPA be established with a framework to eventually incorporate environmental production declarations. With respect to cement exports, it is recommended that manufacturers in China provide emissions intensities and winter smog assessments.
OPEN ACCESS
Age matters: Submersion period shapes community composition of lake biofilms under glyphosate stress
The phosphonate herbicide glyphosate, which is the active ingredient in the commercial formulation Roundup®, is currently the most globally used herbicide. In aquatic ecosystems, periphytic biofilms, or periphyton, are at the base of food webs and are often the first communities to be in direct contact with runoff. Microcosm experiments were conducted to assess the effects of a pulse exposure of glyphosate on community composition and chlorophyll a concentrations of lake biofilms at different colonization stages (2 months, 1 year, and 20 years). This is the first study that uses such contrasting submersion periods. Biofilms were exposed to either environmental levels of pure analytical grade glyphosate (6 μg/L, 65 μg/L, and 600 μg/L) or to corresponding phosphorus concentrations. Community composition was determined by deep sequencing of the 18S and 16S rRNA genes to target eukaryotes and cyanobacteria, respectively. The results showed that submersion period was the only significant contributor to community structure. However, at the taxon level, the potentially toxic genus Anabaena was found to increase in relative abundance. We also observed that glyphosate releases phosphorus into the surrounding water, but not in a bioavailable form. The results of this study indicate that environmental concentrations of glyphosate do not seem to impact the community composition or metabolism of lake biofilms under pulse event conditions.
Notes
OPEN ACCESS
Little is known about how the body composition of parents of preschool-aged children is associated with their food parenting practices. In this study, we examined associations between parental body composition and food parenting practices in a sample of Canadian families with preschool-aged children. We conducted a cross-sectional analysis of 68 parents and 52 preschool-aged children. Measures included height, weight, waist circumference (WC), and percentage of fat mass (%FM) measured by BOD POD™. Parents completed an adapted version of the Comprehensive Feeding Practices Questionnaire. To account for correlated observations within families, we used generalized estimating equations with linear regression modelling to examine associations between parent body composition and food parenting practices, with child body mass index (BMI) z-score, child sex, parental sex, and family household income entered as covariates in all models. Parent BMI, WC, and %FM were each significantly and inversely associated with the encouragement of a balanced diet ( = −0.021, p = 0.006; = −0.007, p = 0.038; = −0.010, p = 0.034, respectively) and child involvement in meal planning and preparation ( = −0.082, p = 0.002; = −0.025, p = 0.032; = −0.038, p = 0.049, respectively). We provide preliminary evidence that overweight/obesity may be associated with select food parenting practices in Canadian families with preschool-age children. Parental body composition may be an important consideration in intervention strategies that target food parenting practices.
OPEN ACCESS
Multiparameter data with both spatial and temporal components are critical to advancing the state of environmental science. These data and data collected in the future are most useful when compared with each other and analyzed together, which is often inhibited by inconsistent data formats and a lack of structured documentation provided by researchers and (or) data repositories. In this paper we describe a linked table-based structure that encodes multiparameter spatiotemporal data and their documentation that is both flexible (able to store a wide variety of data sets) and usable (can easily be viewed, edited, and converted to plottable formats). The format is a collection of five tables (Data, Locations, Params, Data Sets, and Columns), on which restrictions are placed to ensure data are represented consistently from multiple sources. These tables can be stored in a variety of ways including spreadsheet files, comma-separated value (CSV) files, JavaScript object notation (JSON) files, databases, or objects in a software environment such as R or Python. A toolkit for users of R statistical software was also developed to facilitate converting data to and from the data format. We have used this format to combine data from multiple sources with minimal metadata loss and to effectively archive and communicate the results of spatiotemporal studies. We believe that this format and associated discussion of data and data storage will facilitate increased synergies between past, present, and future data sets in the environmental science community.
OPEN ACCESS
Prey individuals possess four basic strategies to manage predation risk while foraging: time allocation, space use, apprehension, and foraging tenacity. But there are no direct tests of theory detailing how spatial strategies change and covary from fine to coarse scales of environmental variability. We address this shortcoming with experiments that estimated space use and vigilance of snowshoe hares while we measured foraging tenacity in artificial resource patches placed in risky open versus safe alder habitat. Hares employed only two of eight a priori options to manage risk. Hares increased vigilance and reduced foraging in open areas as the distance from cover increased. Hares did not differentiate between open and alder habitats, increase vigilance at the coarse-grained scale, or reduce vigilance and foraging tenacity under supplemental cover. Hares were more vigilant in the putatively safe alder than in the purportedly risky open habitat. These apparently paradoxical results appear to reflect a trade-off between the benefit of alder as escape habitat and the cost of obscured sight lines that reduce predator detection. The trade-off also appears to equalize safety between habitats at small scales and suggests that common-sense predictions detailing how prey reduce risk may make no sense at all.
OPEN ACCESS
The constitutive regenerative ability of the goldfish central nervous system makes them an excellent model organism to study neurogenesis. Intraperitoneal injection of neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was used to deplete tyrosine hydroxylase-positive neurons in the adult goldfish telencephalon. We report novel information on the ability of the goldfish to regenerate (∼3–4 d post-MPTP insult) damaged neurons in telencephalic tissue by observing the rapid incorporation of bromodeoxyuridine into newly generated cells, which precedes the recovery of motor function in MPTP-treated animals. Specifically, the telencephalon area telencephali pars dorsalis in female goldfish, which is associated with fish motor activity, regenerates following MPTP toxicity. The remarkable ability of goldfish to rapidly regenerate damaged neurons provides insight into their use as model organisms to study neuroregenerative abilities within a few days following injury. We provide evidence that goldfish are able to regenerate neurons in ∼3–4 d to both replenish and recover baseline catecholaminergic levels, thus enabling the fish to reestablish basic activities such as swimming. The study of neuron regeneration in the damaged goldfish brain will increase our understanding of vertebrate neurogenesis and regeneration processes following central nervous system injury.
OPEN ACCESS
Biochar is gaining attention as an organic soil amendment that can increase plant yields and improve soil fertility. We studied the effect of biochar on the growth of fowl mannagrass (Glyceria striata (Lam.) Hitchc.) (Poaceae), propagated in a greenhouse for future re-introduction into restored wetlands. Three different application rates (10%, 50%, and 75% biochar volume/substrate volume (v/v)) of nutrient-charged (i.e., nutrients added) and uncharged biochar were tested with and without a commercial arbuscular mycorrhizal fungal (AMF) inoculant. Aboveground biomass (shoot mass), belowground biomass (root mass), and shoot height of 166 G. striata samples were recorded after 92 d of growth. Using generalized linear models our data indicated a 50% (v/v) application rate of nutrient-charged biochar without AMF produces a significantly greater growth response (4.4× greater shoot height and 85× greater shoot mass compared with 0% biochar (AMF negative) control). We propose that the increased G. striata growth may be due to changes in pH, and (or) increased nutrient availability due to the addition of biochar. We recommend an application rate of 50% biochar (v/v) charged with nutrients as an advantageous amendment for propagating G. striata.
Editorial
Science Applications Forum
OPEN ACCESS
Science helps us identify problems, understand their extent, and begin to find solutions; it helps us understand future directions for our society. Scientists bear witness to scenes of change and discovery that most people will never experience. Yet the vividness of these experiences is often left out when scientists talk and write about their work. A growing community of practice is showing that scientists can share their message in an engaging way using a strategy that most are already familiar with: storytelling. Here we draw on our experiences leading scientist communication training and hosting science storytelling events at the International Marine Conservation Congress to share basic techniques, tips, and resources for incorporating storytelling into any scientist’s communication toolbox.
OPEN ACCESS
Gaps between environmental science and environmental law may undermine sound environmental decision-making. We link perspectives and insights from science and law to highlight opportunities and challenges at the environmental science–law interface. The objectives of this paper are to assist scientists who wish to conduct and communicate science that informs environmental statutes, regulations, and associated operational policies (OPs), and to ensure the environmental lawyers (and others) working to ensure that these statutes, regulations, and OPs are appropriately informed by scientific evidence. We provide a conceptual model of how different kinds of science-based activities can feed into legislative and policy cycles, ranging from actionable science that can inform decision-making windows to retrospective analyses that can inform future regulations. We identify a series of major gaps and barriers that challenge the successful linking of environmental science and law. These include (1) the different time frames for science and law, (2) the different standards of proof for scientific and legal (un)certainty, (3) the need for effective scientific communication, (4) the multijurisdictional (federal, provincial, and Indigenous) nature of environmental law, and (5) the different ethical obligations of law and science. Addressing these challenges calls for bidirectional learning among scientists and lawyers and more intentional collaborations at the law–science interface.
OPEN ACCESS
Aichi Biodiversity Target 19 calls on Parties to the United Nations Convention on Biological Diversity (CBD) to improve, share, transfer, and apply knowledge. In this study, we provide an initial assessment of the state of evidence-based decision-making in Canada’s protected areas organizations by examining (1) the value and use of various forms of evidence by managers and (2) the extent to which institutional conditions enable or inhibit the use of evidence in decision-making. Results revealed that although managers value and use many forms of evidence in their decision-making, information produced by staff and their organizations are given priority. Other forms of evidence, such as Indigenous knowledge and peer-reviewed information, are valued and used less. The most significant barriers to evidence-based decision-making were limited financial resources, lack of staff, inadequate timeframes for decision-making, a lack of monitoring programs, and a disconnect between researchers and decision-makers. Overall, our results suggest that the potential benefits of evidence-based approaches are not being maximized in Canada’s protected areas organizations. We propose several recommendations to introduce or improve the use of diverse forms of evidence to enhance management effectiveness of Canada’s protected areas and by extension conservation outcomes.
OPEN ACCESS
Since being elected in 2015, Canada’s federal Liberal government has taken steps to overhaul major environment-related laws and policies, including federal environmental assessment (EA) and regulatory processes. During 2016–2017, a government-appointed panel toured Canada and received >1000 suggestions from diverse sectors of society regarding EA reform. Yet, different sectors of society may have different views concerning scientific components of EA. We analyzed written submissions during public consultation (categorized into five sectors) regarding five key scientific components of EA: (1) openly sharing information, (2) evaluating cumulative effects, (3) scientific rigour, (4) transparency in decision-making, and (5) independence between regulators and proponents. On the whole, submissions from Indigenous groups, non-governmental organizations, and individuals/academics supported strengthening all five components. In contrast, most contributions from industry/industry associations, and, to a lesser extent, government bodies or agencies, suggested that there was no need for increased scientific rigour or increased independence. These findings indicate that there is cross-sectoral support for strengthening some scientific aspects of EA. However, the degree to which the Government of Canada strengthens the scientific rigour and independence of EA will indicate whether environmental decision-making in Canada is aligned with preferences from industry or the rest of Canada.
OPEN ACCESS
Biodiversity is intrinsically linked to the health of our planet—and its people. Yet, increasingly, human activities are causing the extinction of species, degrading ecosystems, and reducing nature’s resilience to climate change and other threats. As a signatory to the Convention on Biological Diversity, Canada has a legal responsibility to protect 17% of land and freshwater by 2020. Currently, Canada has protected ∼10% of its terrestrial lands, requiring a marked increase in the pace and focus of protection over the next three years. Given the distribution, extent, and geography of Canada’s current protected areas, systematic conservation planning would provide decision-makers with a ranking of the potential for new protected area sites to stem biodiversity loss and preserve functioning ecosystems. Here, we identify five key principles for identifying lands that are likely to make the greatest contribution to reversing biodiversity declines and ensuring biodiversity persistence into the future. We identify current gaps and integrate principles of protecting (i) species at risk, (ii) representative ecosystems, (iii) intact wilderness, (iv) connectivity, and (v) climate refugia. This spatially explicit assessment is intended as an ecological foundation that, when integrated with social, economic and governance considerations, would support evidence-based protected area decision-making in Canada.
OPEN ACCESS
The concept of sustainable phosphorus is studied in depth around the world, as the scientific community largely agrees that the non-renewable phosphorus reserves in the form of phosphorite ore must be used judiciously. Unfortunately, many developed countries, including Canada, have yet to implement a phosphorus management plan. The Netherlands, Germany, and Switzerland can be heralded as success stories of effective, committed, cross-sector phosphorus management. We examine factors that contributed to their success and consider how these may be transferred to Canada. We also consider Canadian geographic and research factors and contrast the Canadian policy environment and phosphorus recycling efforts with those in the EU. Finally, we analyze active Canadian and North American phosphorus interest groups and seek to determine why their collective efforts have yet to coalesce around tangible action. Canada produces phosphorus fertilizer from imported deposits of phosphate rock. Canada produces potassium fertilizer from its rich potash mines, making it a global power in nutrient production. It is imperative that Canada earns a respected leadership role in efficient global phosphorus and potassium nutrient management and recycling.
OPEN ACCESS
Fisheries involve complex problems not easily addressed by a single discipline, methodology, or set of stakeholders. In 2010, the Canadian Fisheries Research Network (CFRN) was initiated to increase fisheries research capacity in Canada through interdisciplinary and inclusive research collaborations. As post-graduate students in the network, we reflected on the type of training necessary to tackle fisheries problems and reviewed opportunities available at Canadian universities to receive such training. This paper presents an overview of fisheries education currently available in Canada, reflects on our training within the CFRN, and proposes improvements to fisheries education and research. Our review of the subject revealed few dedicated fisheries programs, limited interdisciplinary programs, few specialized fisheries training programs, and a heavy reliance on academic supervisors to secure research opportunities in fisheries. In contrast, the CFRN enhanced our training by deliberately focusing on tools and techniques to address fisheries issues, providing venues to foster interdisciplinary and inclusive research collaborations, and exposing the realities of stakeholder collaborations. We call for post-graduate-level fisheries education and research that is interdisciplinary, collaborative, and inclusive to produce well-rounded scientists and managers, and we suggest ways that universities, researchers, and funding agencies can incorporate these themes into fisheries education and research.
Review Article
OPEN ACCESS
Integrating wood fuels into agriculture and food security agendas and research in sub-Saharan Africa
In sub-Saharan Africa (SSA), food security can be influenced by many factors including farmer productivity, access to soil amendments, labor availability, and family incomes (just to name a few). In this paper, we suggest that an additional issue contributes to food insecurity and has been historically absent from the discussion, namely access to cooking energy, particularly for very low income, food insecure individuals. This paper examines the most recent literature that describes the central role played by wood fuels, in particular firewood and charcoal, as a vital, though controversial, source of fuel used by the vast majority of rural and urban sub-Saharan Africans. We explore the reality that although the health risks of collecting and using firewood and charcoal in traditional manners are real, policy makers, researchers, and donors need to address the sustainability and viability of the current fuel types used by the majority of people. We end the paper with a series of practical suggestions for improving the wood fuel systems as they currently exist in the region.
OPEN ACCESS
Recently, the use of small-bodied fish in environmental monitoring has increased, particularly within the Canadian environmental effects monitoring (EEM) and other adaptive programs. Although it is possible to measure changes with many small-bodied species, interpretation is often complicated by the absence of information on the biology and ecology of fish not of commercial, recreational, or traditional interest. Knowing and understanding the basic biology of these fishes aids in the sensitivity of study designs (i.e., ability to detect change) and the interpretation of all biological levels of responses (e.g., cellular to community). The increased use of slimy sculpin (Cottus cognatus Richardson, 1836) in impact assessment studies in North America provides a considerable amount of information on life history aspects. The slimy sculpin has the most ubiquitous North American distribution among cottids but yet has a very small home range, thus integrating environmental conditions of localized areas. This paper describes aspects of slimy sculpin life cycle that affect collection efficiency and timing, and describes and provides data collected over more than 10 years of studies at more than 20 reference study sites. This overview provides a functional and informative compilation to support adaptive environmental monitoring and provide a baseline for comparative ecological study.
OPEN ACCESS
There is movement in engineering fields and in Indigenous communities for enhancement of local participation in the design of community infrastructure. Inclusion of community priorities and unique cultural, spiritual, and traditional values harmonize the appearance, location, and functionality of developments with the social and cultural context in which they are built and contribute to holistic wellness. However, co-design processes that align community values and the technical needs of water facilities are difficult to find. A scoping review was conducted to explore the state of knowledge on co-design of water infrastructure in Indigenous Canada to build a knowledge base from which practices and processes could emerge. The scoping results revealed that articles and reports emerged only in recent years, contained case studies and meta-reviews with primary (qualitative) data, and involved community members in various capacities. Overall, 13 articles were reviewed that contributed to understanding co-design for water infrastructure in Indigenous Canada. Barriers to co-design included funding models for Indigenous community infrastructure, difficulties in engineers and designers understanding Indigenous worldviews and paradigms, and a lack of cooperation among stakeholders that contribute to ongoing design failures. A working definition of co-design for Indigenous water infrastructure is presented.
OPEN ACCESS
Mercury (Hg) is a global pollutant emitted primarily as gaseous Hg0 that is deposited in aquatic and terrestrial ecosystems following its oxidation to HgII. From that point, microbes play a key role in determining Hg’s fate in the environment by participating in sequestration, oxidation, reduction, and methylation reactions. A wide diversity of chemotrophic and phototrophic microbes occupying oxic and anoxic habitats are known to participate directly in Hg cycling. Over the last few years, new findings have come to light that have greatly improved our mechanistic understanding of microbe-mediated Hg cycling pathways in the environment. In this review, we summarize recent advances in microbially mediated Hg cycling and take the opportunity to compare the relatively well-studied chemotrophic pathways to poorly understood phototrophic pathways. We present how the use of genomic and analytical tools can be used to understand Hg transformations and the physiological context of recently discovered cometabolic Hg transformations supported in anaerobes and phototrophs. Finally, we propose a conceptual framework that emphasizes the role that phototrophs play in environmental Hg redox cycling and the importance of better characterizing such pathways in the face of the environmental changes currently underway.
Correction
OPEN ACCESS
UALVP 56200, originally identified as a partial pelvis of an azhdarchid pterosaur, is a badly broken tyrannosaurid squamosal. Previous conclusions presented about pelvic myology and locomotion in azhdarchids are unsubstantiated and should be disregarded. UALVP 56200 is briefly redescribed here as a squamosal, and provides insights on the extent of cranial pneumaticity in tyrannosaurids.
OPEN ACCESS
OPEN ACCESS
OPEN ACCESS
OPEN ACCESS
How men and women are portrayed in the media informs societal attitudes towards gender. Although this is true for all media, the scientific media has received little scrutiny, despite known gender biases inherent in scientific culture. We asked whether the top scientific journals, Nature and Science, represented men and women equally as authors, subjects, and objects in photographs. Overwhelmingly, women were underrepresented in these magazines, an effect that was apparent even in advertisements and stock photographs. Clearly, gender bias in science exists at many levels.
OPEN ACCESS
The mollusc nudibranch genus Hermissenda Bergh, 1879 was recently discovered to include three pseudocryptic species, dividing a single species H. crassicornis (sensu lato) into H. crassicornis Escholtz, 1831, H. opalescens J.G. Cooper, 1863, and H. emurai Baba, 1937. The species were distinguished by both genetic and morphological evidence, and the distribution of sampled animals suggested the three species had mostly distinct geographical ranges. Here, we report the presence of both H. crassicornis and H. opalescens in Barkley and Clayoquot Sounds, British Columbia, Canada, based on diagnostic characters and molecular data congruent with the differences described for these two species. This result extends the region of sympatry for the two species from northern California, USA, to, at least, Vancouver Island, British Columbia in 2016. Depending on how long this overlap has occurred, the possible northward expansion of H. opalescens would have implications for understanding the effects of short- or long-term environmental changes in ocean temperatures as well as complicating the interpretation of past neurobiological studies of H. crassicornis (sensu lato).
OPEN ACCESS
Ancient starch research illuminates aspects of human ecology and economic botany that drove human evolution and cultural complexity over time, with a special emphasis on past technology, diet, health, and adaptation to changing environments and socio-economic systems. However, lapses in prevailing starch research demonstrate the exaggerated expectations for the field that have been generated over the last few decades. This includes an absence of explanation for the millennial-scale survivability of a biochemically degradable polymer, and difficulties in establishing authenticity and taxonomic identification. This paper outlines new taphonomic and authenticity criteria to guide future work toward designing research programs that fully exploit the potential of ancient starch while considering growing demands from readers, editors, and reviewers that look for objective compositional identification of putatively ancient starch granules.
OPEN ACCESS
Engagement of undergraduate students in research has been demonstrated to correlate with improved academic performance and retention. Research experience confers many benefits on participants, particularly foundational skills necessary for graduate school and careers in scientific disciplines. Undergraduate curricula often do not adequately develop collaborative skills that are becoming increasingly useful in many workplaces and research settings. Here, we describe a pilot program that engages undergraduates in research and incorporates learning objectives designed to develop and enhance collaborative techniques and skills in team science that are not typical outcomes of the undergraduate research experience. We conducted a collaborative science project that engaged faculty advisors and upper year undergraduates at four institutions and conducted a review to assess the program’s efficacy. Students developed a broad suite of competencies related to collaborative science, above and beyond the experience of completing individual projects. This model also affords distinct advantages to faculty advisors, including the capacity of the network to collect and synthesize data from different regions. The model for training students to conduct collaborative science at an early stage of their career is scalable and adaptable to a wide range of fields. We provide recommendations for refining and implementing this model in other contexts.