Applied Filters
- Ecology and Evolution
- Biological and Life SciencesRemove filter
- Mallory, Mark LRemove filter
Journal Title
Publication Date
Author
Access Type
1 - 3of3
Save this search
Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Filters
You do not have any saved searches
- OPEN ACCESS
- Jannie F. Linnebjerg,
- Julia E. Baak,
- Tom Barry,
- Maria V. Gavrilo,
- Mark L. Mallory,
- Flemming R. Merkel,
- Courtney Price,
- Jakob Strand,
- Tony R. Walker, and
- Jennifer F. Provencher
Marine plastic is a ubiquitous environmental problem that can have an impact on a variety of marine biota, such as seabirds, making it an important concern for scientists and policy makers. Although research on plastic ingestion by seabirds is increasing, few studies have examined policies and long-term monitoring programs to reduce marine plastic in the Arctic. This paper provides a review of international, national, and regional policies and long-term monitoring programs that address marine plastic in relation to seabirds in the Arctic countries: Canada, the Kingdom of Denmark (Greenland and the Faroe Islands), Finland, Iceland, Norway, the Russian Federation, Sweden, and the United States of America. Results show that a broad range of international, national, regional and local policies address marine debris, specifically through waste management and the prevention of pollution from ships. However, few policies directly address seabirds and other marine biota. Further, policies are implemented inconsistently across regions, making it difficult to enforce and monitor the efficacy of these policies given the long-range transport of plastic pollution globally. To reduce marine plastic pollution in the Arctic environment, pan-Arctic and international collaboration is needed to implement standardized policies and long-term monitoring programs for marine plastic in the Arctic and worldwide. - OPEN ACCESS
- Shawn R. Craik,
- Rodger D. Titman,
- Anna M. Calvert,
- Gregory J. Robertson,
- Mark L. Mallory, and
- Sarah E. Gutowsky
The addition of eggs to a nest by a conspecific is known for approximately 250 bird species. Understanding the evolution of conspecific brood parasitism (CBP) requires assessment of fitness consequences to the egg recipient (host). We addressed host traits and the effects of CBP on future reproduction (i.e., annual survival) and hatching success of hosts by following the nesting of 206 red-breasted mergansers (Mergus serrator) for a colony in which an average of 41% of nests was parasitized annually. Each host was tracked for ≥2 seasons and up to seven seasons. The proportion of a host’s nesting attempts that was parasitized averaged 43% and varied considerably across individuals (range 0%–100%). Probability of parasitism, however, was not repeatable across a host’s nests. Rather, rates of CBP throughout a host’s lifetime increased with earlier dates of nest initiation. CBP had no effect on annual survival of a host. Hatching success throughout a host’s lifetime declined with a greater number of foreign eggs added to the individual’s nests. This study revealed that there may be measurable costs of CBP to lifetime reproductive success in red-breasted mergansers, although our observations suggest that costs to hosts are limited to the most heavily parasitized clutches. - OPEN ACCESSThe American common eider (Somateria mollissima dresseri) is a colonially nesting sea duck breeding on islands in the coastal regions of Atlantic Canada. Declines in colony size have been pronounced in some parts of its range, notably in Nova Scotia, and may be attributable to a variety of interconnected factors including changes in habitat conditions. Using surveys collected two decades apart, we compared nesting habitat types, availability, and use by breeding eiders on 16 islands that supported >1600 eider nests in 1992–1993, but 830 nests in 2013. While general patterns of eider nesting habitat use remained consistent (e.g., nesting preferences exhibited for Low Shrubland and Grassland habitats, and avoidance of forest or beach habitats), overall vegetation cover declined, but relative habitat changes were inconsistent across islands. Three of the islands with the greatest change in vegetation had cormorant (Phalacrocorax spp.) colonies in 2013 that were not there in the earlier years. We suggest that changes in vegetation, in some cases facilitated by cormorant colony formation, influenced susceptibility of nesting females to predators, and these interconnected factors may be contributing to local population declines.