Applied Filters
- Epidemiology
Journal Title
Topics
Publication Date
Author
- Afifi, Tracie O2
- Chandraraj, Arthana2
- Fortier, Janique2
- Gonzalez, Andrea2
- Kimber, Melissa2
- MacMillan, Harriet L2
- Roos, Leslie2
- Salmon, Samantha2
- Sareen, Jitender2
- Stewart-Tufescu, Ashley2
- Straus, Sharon E2
- Taillieu, Tamara2
- Thakur, Krishna K2
- Tonmyr, Lil2
- Vanderstichel, Raphaël2
- Adamovicz, Laura1
- Akbarzadeh, Mahdi1
- Allan, Brian F1
- Allender, Matthew C1
- Bai, Guirong1
- Baral, Stefan1
- Beckett, Robyn1
- Berall, Anna1
- Berhane, Yohannes1
- Berry, Isha1
Access Type
21 - 24of24
Save this search
Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Filters
Search Name | Searched On |
---|---|
[Subject Areas: Epidemiology] AND [Subject Areas: Earth and Environmental Sciences] (2) | 31 Mar 2025 |
[Subject Areas: Mathematics and Statistics] AND [Subject Areas: Geosciences] (1) | 31 Mar 2025 |
You do not have any saved searches
- OPEN ACCESSMercury (Hg) and polycyclic aromatic hydrocarbons (PAHs) are global pollutants known for their toxicity to wildlife. Because of their trophic position, common loons (Gavia immer (Brünnich 1764)) are excellent indicators of environmental quality. In 2014 and 2015, tissue samples of ten adult common loons (plus one recapture) were obtained in Meadow Lake Provincial Park, Saskatchewan, and assessed for Hg and PAH exposure. Blood and feather levels of these contaminants are indicative of exposure during breeding and in wintering areas, respectively. Compared with an international Hg database, blood Hg levels were low (<1 μg/g). In most loons (90.5%, 10 out of 11), blood PAH concentrations were also low (<10 ng/g), but high (120 ng/g) for one individual (9.5% 1 out of 11). Feather PAH concentrations were high (95.9 ng/g and 250.6 ng/g) in two of the four loons (50%) caught in 2015. These data indicate that loons breeding in Meadow Lake Provincial Park were exposed to low levels of Hg; however, some individuals are being exposed to PAHs in both their breeding and wintering locations. The effect of these environmental pollutants on individual loon fitness is unclear, but because of their extreme toxicity in biological systems we suggest that future monitoring in the surrounding region is warranted.
- OPEN ACCESS
- Krishna K. Thakur,
- Raphaël Vanderstichel,
- Shaorong Li,
- Emilie Laurin,
- Strahan Tucker,
- Chrys Neville,
- Amy Tabata, and
- Kristina M. Miller
Infectious diseases are likely contributing to large-scale declines in chinook salmon stocks in the Pacific Northwest, but the specific agents and diseases involved, and the prevalences in migratory salmon, are mostly unknown. We applied a high-throughput microfluidics platform to screen for 45 infectious agents in 556 out-migrating juvenile chinook salmon, collected from freshwater (FW) and saltwater (SW) locations in the Cowichan River system on Vancouver Island, Canada, during 2014. Nineteen agents (5 bacterial, 2 viral, and 12 parasitic) were detected, with prevalences ranging from 0.2% to 57.6%. Co-infections between Candidatus Branchiomonas cysticola Toenshoff, Kvellestad, Mitchell, Steinum, Falk, Colquhoun & Horn, 2012, Paranucleospora theridion Nylund, Nylund, Watanabe, Arnesen & Kalrsbakk, 2010, and gill chlamydia, all associated with gill disease, were observed in SW samples. We detected agents known to cause large-scale mortalities in Pacific salmon (Ceratonova shasta (Noble, 1950), Parvicapsula minibicornis Kent, Whitaker & Dawe, 1977), and agents only recently reported in Pacific salmon in BC (Ca. B. cysticola, P. theridion, Facilispora margolisi Jones, Prosperi-Porta & Kim, 2012 and Parvicapsula pseudobranchicola Karlsbakk, Saether, Hostlund, Fjellsoy & Nylund, 2002). Wild and hatchery fish were most divergent in agent profiles in FW, with higher agent diversity in wild fish. Differences in prevalence largely dissipated once they converged in the marine environment, although hatchery fish may be infected by a greater diversity of agents sooner after ocean entry by virtue of their more rapid migration from nearshore to offshore environments. - OPEN ACCESS
- Brett Emo,
- Li-Wen Hu,
- Bo-Yi Yang,
- Kahee A. Mohammed,
- Christian Geneus,
- Michael Vaughn,
- Zhengmin (Min) Qian, and
- Guang-Hui Dong
To assess the effects of housing characteristics and home environmental factors on lung function of Chinese children, 6740 children (aged 6–16 years) were recruited from seven cities in Northeast China in 2012. Performance of lung function was determined by comparison of forced vital capacity (FVC), forced expiratory volume (FEV1), peak expiratory flow (PEF), and maximal mid-expiratory flow (MMEF). Multivariate regression models were used to evaluate the associations with lung function deficit. The results showed that housing conditions were associated with lung function deficit in children. The adjusted odds ratios were 0.47 (95% CI: 0.26–0.83) for FVC for “ping-fang” housing compared with “dan-yuan-lou-fang” housing and 2.90 (95% CI: 2.43–3.47) for FEV1 with home renovations completed within two years compared with counterparts. The linear regression models consistently showed a significant association of housing conditions and home environmental factors with lung function measurements across subjects. A residence taller than seven stories was negatively associated with FEV1 (β = −55; 95% CI: −97 to −13). In conclusion, housing conditions and home environmental factors are particularly important to the development of lung function and respiratory health in children. These factors are concerning and action should be taken to improve them. - OPEN ACCESS
- Krishna K. Thakur,
- Crawford Revie,
- Henrik Stryhn,
- Shannon Scott Tibbetts,
- Jean Lavallée, and
- Raphaël Vanderstichel
Soft-shelled lobsters pose economic challenges to the lobster industry due to low meat yields and survivability during holding and transportation. Our objectives were to describe spatio-temporal patterns of soft-shelled lobsters in southwestern Nova Scotia, and identify environmental and lobster-related factors associated with shell quality. We analyzed data obtained from a broad-scale, intensive monitoring project and remotely sensed water temperatures. Mixed-effect logistic regression and linear regression methods analyzed more than 130 000 samples collected between 2004 and 2014. The annual overall prevalence of soft-shelled lobsters ranged from 9% to 38% and varied significantly among fishing areas. Shell quality was influenced by sex and size, and in the 2 months before the fishing season, lower water temperatures (4–6 weeks prior to sampling) were associated with reduced prevalence of soft-shells. High annual variability of soft-shell prevalence, that water temperature alone could not explain, suggests that adjusting fishing seasons, arbitrarily, in two fishing areas will not improve the overall shell quality of landed lobsters. Further research is needed to evaluate the effects of long-term temperature and ecosystem changes on lobster health in eastern Canada.