Applied Filters
- Biological and Life Sciences
Journal Title
Topics
- Ecology and Evolution146
- Integrative Sciences55
- Earth and Environmental Sciences44
- Zoology44
- Marine and Aquatic Sciences35
- Conservation and Sustainability33
- Genetics and Genomics23
- Plant and Agricultural Sciences21
- Microbiology19
- Biomedical and Health Sciences11
- Anatomy and Biomechanics8
- Cell and Developmental Biology8
- Geosciences8
- Epidemiology7
- Science and Society7
- Science and Policy5
- Science Communication4
- Public Health3
- Anatomy and Physiology2
- Science Education2
- Atmospheric and Climate Sciences1
- Chemistry1
- Clinical Sciences1
- Data Science1
- Ethics1
- Neuroscience1
- Physical Sciences1
- Research Data Management1
Publication Date
Author
- Hall, Britt D6
- Mallory, Mark L5
- Miller, Kristina M5
- Edwards, Sara4
- Heard, Stephen B4
- Tabata, Amy4
- Ariel, Ellen3
- Currie, Philip J3
- Davy, Christina M3
- Esenkulova, Svetlana3
- Fenton, M Brock3
- Heustis, Allyson3
- Johns, Rob C3
- Morris, Douglas W3
- Orihel, Diane M3
- Owens, Emily3
- Provencher, Jennifer F3
- Pureswaran, Deepa S3
- Robertson, Gregory J3
- Sutherland, Ben J G3
- Walker, Allison K3
- Addison, Jason A2
- Barry, Tegan N2
- Bates, Amanda E2
- Becker, Daniel J2
Access Type
121 - 140of203
Save this search
Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Filters
You do not have any saved searches
- OPEN ACCESSFish, amphibians, and reptiles exhibit temperature-dependent ranaviral disease. We performed an experimental infection at four different environmental temperatures (16, 22, 28, and 34 °C) to investigate the effect of temperature on ranaviral infection in Krefft’s turtle (Emydura macquarii krefftii). Infection rates and viral loads were determined by quantitative polymerase chain reaction to detect ranaviral DNA in liver samples at 21 d postexposure. The rate of infection differed across the temperature treatment groups. Infection rates were 44%, 90%, 60%, and 10% for the 16, 22, 28, and 34 °C temperature groups, respectively. Highest viral load was observed in the 28 °C temperature group, and there was a statistically significant difference in viral load between the 16 and 28 °C temperature groups (p = 0.027). Based on the results of this study, the temperature of maximal infection rate for ranaviral infection in Krefft’s river turtles is estimated to be 23.2 °C (SD = 4.5). The findings of this study can inform management decisions in terms of disease control and treatment and form a platform for modelling disease outbreaks.
- OPEN ACCESSHigh-latitude countries often contain the polar range edge of species that are common farther south, potentially focusing national conservation efforts toward range-edge populations. The global conservation value of edge populations is controversial, but if they occur where biodiversity is high, there need not be trade-offs in protecting them. Using 152 of 158 terrestrial mammal species in Canada, we tested how species’ distributions relate to their national conservation status and total mammal richness. We found that half of “Canadian” mammals had <20% of their global range in Canada. National threat status was strongly associated with range area; mammals considered “at risk” had 42% smaller Canadian ranges than mammals considered secure. However, after accounting for range area, taxa with smaller proportions of their global range in Canada were not more likely to be considered at risk, suggesting edge populations are not inherently more vulnerable. When we calculated mammal diversity across Canada (100 × 100 km grid cells), we found that hotspots of at-risk or range-edge mammals were twice as species rich as nonhotspot cells, containing up to 44% of Canadian mammal diversity per grid cell. Our results suggest that protecting areas with the most at-risk or range-edge mammals would simultaneously protect habitat for many species currently deemed secure.
- OPEN ACCESSThere is a gap between fundamental science and managers. There are many general solutions including the need to better leverage the primary scientific literature for decision-making. Herein, we provide a list of 10 simple rules to support environmental management through better scientific writing and suggest practices for more transparent publications. These rules can also be used as a checklist for reusing the primary literature when searching for relevant evidence in the environmental sciences. We need to better structure knowledge in papers for connections within sustainable societies.
- OPEN ACCESS
- Megan L. Larsen,
- Helen M. Baulch,
- Sherry L. Schiff,
- Dana F. Simon,
- Sébastien Sauvé, and
- Jason J. Venkiteswaran
The increasing prevalence of cyanobacteria-dominated harmful algal blooms is strongly associated with nutrient loading and changing climatic patterns. Changes to precipitation frequency and intensity, as predicted by current climate models, are likely to affect bloom development and composition through changes in nutrient fluxes and water column mixing. However, few studies have directly documented the effects of extreme precipitation events on cyanobacterial composition, biomass, and toxin production. We tracked changes in a eutrophic reservoir following an extreme precipitation event, describing an atypically early toxin-producing cyanobacterial bloom and successional progression of the phytoplankton community, toxins, and geochemistry. An increase in bioavailable phosphorus by more than 27-fold in surface waters preceded notable increases in Aphanizomenon flos-aquae throughout the reservoir approximately 2 weeks postevent and ∼5 weeks before blooms typically occur. Anabaenopeptin-A and three microcystin congeners (microcystin-LR, -YR, and -RR) were detected at varying levels across sites during the bloom period, which lasted between 3 and 5 weeks. These findings suggest extreme rainfall can trigger early cyanobacterial bloom initiation, effectively elongating the bloom season period of potential toxicity. However, effects will vary depending on factors including the timing of rainfall and reservoir physical structure. - OPEN ACCESS
- Nicole A. Lopez Vargas,
- Laura Adamovicz,
- Brittany Willeford,
- Brian F. Allan, and
- Matthew C. Allender
Ranaviruses are worldwide pathogens of ectothermic vertebrates that can threaten herptile conservation efforts. Identifying transmission routes is critical for understanding disease ecology and promoting species conservation. Frog virus 3 (FV3) DNA was detected in mosquitoes during a ranavirus outbreak in semicaptive box turtles, but the role that insect vectors play under natural conditions is unknown. To address this knowledge gap, we collected mosquito species known to take blood meals from reptiles and amphibians (Aedes canadensis, Culex erraticus, Culex territans, and Uranotaenia sapphirina) from mid-May to early August, 2014, at four study sites in Vermilion County, Illinois, two of which had historic or ongoing FV3 outbreaks in box turtles and amphibians. Mosquitoes were batched by date and species, DNA was extracted, and quantitative polymerase chain reaction was performed for detection of FV3. FV3 was not detected despite one of the sites having an active FV3 outbreak during the study period. Our findings indicate that FV3 detection is uncommon in mosquitoes during outbreak and nonoutbreak conditions at these sites in Illinois. Thus, we cannot establish that mosquitoes contribute to transmission during natural mortality events without performing further studies. - OPEN ACCESS
- Svetlana Esenkulova,
- Ben J.G. Sutherland,
- Amy Tabata,
- Nicola Haigh,
- Christopher M. Pearce, and
- Kristina M. Miller
Molecular techniques are expected to be highly useful in detecting taxa causing harmful algal blooms (HABs). This is the first report in Canada evaluating HABs-related species identification using a combination of morphological and molecular approaches. Microscopy, quantitative polymerase chain reaction (qPCR), and metabarcoding with multiple markers (i.e., 16S, 18S-dinoflagellate and 18S-diatom, large subunit (28S) rDNA) were applied on samples (n = 54) containing suspected harmful algae (e.g., Alexandrium spp., Chattonella sp., Chrysochromulina spp., Dictyocha spp., Heterosigma akashiwo, Protoceratium reticulatum, Pseudochattonella verruculosa, Pseudo-nitzschia spp., Pseudopedinella sp.). Owing to methodology limitations, qPCR result interpretation was limited, although good detectability occurred using previously published assays for Alexandrium tamarense, H. akashiwo, and P. verruculosa. Overall, the multiple-marker metabarcoding results were superior to the morphology-based methods, with the exception of taxa from the silicoflagellate group. The combined results using both 18S markers and the 28S marker together closely corresponded with morphological identification of targeted species, providing the best overall taxonomic coverage and resolution. The most numerous unique taxa were identified using the 18S-dinoflagellate amplicon, and the best resolution to the species level occurred using the 28S amplicon. Molecular techniques are therefore promising for HABs taxa detection but currently depend on deploying multiple markers for metabarcoding. - OPEN ACCESS
- OPEN ACCESS
- Preeyanan Sriwanayos,
- Kuttichantran Subramaniam,
- Natalie K. Stilwell,
- Kamonchai Imnoi,
- Vsevolod L. Popov,
- Somkiat Kanchanakhan,
- Jaree Polchana, and
- Thomas B. Waltzek
Ranaviruses are emerging pathogens associated with worldwide epizootics in farmed and wild ectothermic vertebrates. In this study, we determined the full genomes of eight ranaviruses isolated from marbled sleeper goby (Oxyeleotris marmorata), goldfish (Carassius auratus), guppy (Poecilia reticulata), tiger frog (Hoplobatrachus tigerinus), Asian grass frog (Fejervarya limnocharis), and East Asian bullfrog (H. rugulosus) cultured or imported into Thailand. These ranaviral isolates induced the same cytopathic effects (i.e., progression of coalescing round plaques) in epithelioma papulosum cyprini (EPC) cell cultures. Transmission electron microscopy of infected EPC cells revealed cytoplasmic viral particles with ultrastructural features typical for ranaviruses. Pairwise genetic comparisons of the complete major capsid protein coding sequences from the Thai ranaviruses displayed the highest identity (99.8%–100%) to a ranavirus (tiger frog virus; TFV) isolated from diseased tiger frogs cultured in China, a slightly lower identity (99.3%–99.4%) to a ranavirus (Wamena virus; WV) isolated from diseased green tree pythons (Morelia viridis) illegally exported from Papua New Guinea, and a lower identity to 35 other ranaviruses (93.7%–98.6%). Phylogenomic analyses supported the eight Thai ranaviruses, Chinese TFV, and WV as a subclade within a larger frog virus 3 clade. Our findings confirm the spread of TFV among cultured fish and amphibians in Asia and likely in reptiles in Oceania. Biosecurity measures are needed to ensure TFV does not continue to spread throughout Southeast Asia and to other parts of the world via international trade. - OPEN ACCESS
- OPEN ACCESS
- OPEN ACCESS
- OPEN ACCESS
- OPEN ACCESSMonarch butterflies (Danaus plexippus, Linnaeus, 1758) are comprised of two migratory populations separated by the Rocky Mountains and are renowned for their long-distance movements among the United States, Canada, and Mexico. Both populations have declined over several decades across North America prompting all three countries to evaluate conservation efforts. Monitoring monarch distribution and abundance is a necessary aspect of ongoing management in Canada where they are a species at risk. We used presence-only data from two citizen science data sets to estimate the annual breeding distribution of monarch butterflies in Canada between 2000 and 2015. Monarch breeding distribution in Canada varied widely among years owing to natural variation, and when considering the upper 95% of the probability of occurrence, the annual mean breeding distribution in Canada was 484 943 km2 (min: 173 449 km2; max: 1 425 835 km2). The area of occurrence was approximately an order of magnitude larger in eastern Canada than in western Canada. Habitat restoration for monarch butterflies in Canada should prioritize productive habitats in southern Ontario where monarchs occur annually and, therefore, likely contribute most to the long-term viability of monarchs in eastern North America. Overall, our assessment sets the geographic context to develop successful management strategies for monarchs in Canada.
- OPEN ACCESSThe salmon louse Lepeophtheirus salmonis (Krøyer 1837) displays numerous sexually dimorphic characteristics. Insights into their underlying molecular components have only recently been explored, which serve to better understand both the basic biology of the louse, associated impacts on drug sensitivity, and evolution of resistance. Expression of 16 L. salmonis genes putatively involved in sexual dimorphism and reproduction were used to determine differences between sexes and better understand responses to mating using RT-qPCR of pre-adult and adult lice. Analysis of these genes revealed the dynamic nature of sex-biased expression across stages. However, female reception of a spermatophore did not appear to impact the expression of these particular genes. Furthermore six of these transcripts and 84 others identified previously in a large-scale louse transcriptomics experiment were used to estimate differences in evolutionary rates and codon-usage bias of sex-related genes using phylogenetic analysis by maximum likelihood (PAML) and codonW. Results suggest male-biased genes are evolving at significantly greater rates than female-biased and unbiased genes as evidenced by higher rates of non-synonymous substitutions and lower codon-usage bias in these genes. These analyses expand our understanding of interactions of sex-biased expression across the pre-adult and adult life stages and provide foundations for better understanding evolutionary differences in sex-biased genes of L. salmonis.
- OPEN ACCESSWe used moored 75 kHz acoustic Doppler current profilers (ADCPs) to examine seasonal cycles in zooplankton deep scattering layers (DSLs) observed below 1300 m depth at Endeavour Ridge hydrothermal vents. DSLs are present year-round in the lower water column near vent plumes. Temporal variations suggest passive, flow-induced displacements superimposed on migratory movements. Although the strongest DSLs are shallower than the neutrally buoyant plumes (1900–2100 m), anomalies also occur at and below plume depth. Upward movement from plume depth in the main DSL is evident in late summer/fall, resulting in shallower DSLs in winter, consistent with the timing of adult diapause/reproduction in upper-ocean migratory copepods. Movement from the upper ocean to plume depth coincides with pre-adult migration to greater depths in spring. Synchronous 20–40 d cycles in DSLs may account for patchiness in space and time of above-plume zooplankton layers observed in summer during previous net-sampling surveys, and suggests lateral and vertical migratory movements to counter current drift away from plume-derived food sources. Persistent near-bottom DSLs move vertically between the spreading plume and seafloor. Historical net data suggests that these are deep, resident fauna. Unlike upper ocean fauna, they seem to be advected considerable distances from the ridge axis, where they are evident as remnant scattering layers.
- OPEN ACCESSAddition of nutrients, such as nitrogen, can degrade water quality in lakes, rivers, and estuaries. To predict the fate of nutrient inputs, an understanding of the biogeochemical cycling of nutrients is needed. We develop and employ a novel, parsimonious, process-based model of nitrogen concentrations and stable isotopes that quantifies the competing processes of volatilization, biological assimilation, nitrification, and denitrification in nutrient-impacted rivers. Calibration of the model to nitrogen discharges from two wastewater treatment plants in the Grand River, Ontario, Canada, show that ammonia volatilization was negligible relative to biological assimilation, nitrification, and denitrification within 5 km of the discharge points.
- OPEN ACCESS
- James M.C. Jones,
- Elizabeth A. Webb,
- Michael D.J. Lynch,
- Trevor C. Charles,
- Pedro M. Antunes, and
- Frédérique C. Guinel
Carbonatites are unusual alkaline rocks with diverse compositions. Although previous work has characterized the effects these rocks have on soils and plants, little is known about their impacts on local ecosystems. Using a deposit within the Great Lakes–St. Lawrence forest in northern Ontario, Canada, we investigated the effect of a carbonatite on soil chemistry and on the structure of plant and soil microbial communities. This was done using a vegetation survey conducted above and around the deposit, with corresponding soil samples collected for determining soil nutrient composition and for assessing microbial community structure using 16S/ITS Illumina Mi-Seq sequencing. In some soils above the deposit a soil chemical signature of the carbonatite was found, with the most important effect being an increase in soil pH compared with the non-deposit soils. Both plants and microorganisms responded to the altered soil chemistry: the plant communities present in carbonatite-impacted soils were dominated by ruderal species, and although differences in microbial communities across the surveyed areas were not obvious, the abundances of specific bacteria and fungi were reduced in response to the carbonatite. Overall, the deposit seems to have created microenvironments of relatively basic soil in an otherwise acidic forest soil. This study demonstrates for the first time how carbonatites can alter ecosystems in situ. - OPEN ACCESSCoastal biogenic habitats are vulnerable to human impacts from both terrestrial and marine realms. Yet the broad spatial scale used in current approaches of quantifying anthropogenic stressors is not relevant to the finer scales affecting most coastal habitats. We developed a standardized human impact metric that includes five bay-scale and four local-scale (0–1 km) terrestrial and marine-based impacts to quantify the magnitude of anthropogenic impacts to coastal bays and nearshore biogenic habitats. We applied this metric to 180 seagrass beds (Zostera marina), an important biogenic habitat prioritized for marine protection, in 52 bays across Atlantic Canada. The results show that seagrass beds and coastal bays exist across a wide human impact gradient and provide insight into which are the most and least affected by human threats. Generally, land alteration, nutrient loading, and shellfish aquaculture were higher in the Gulf of St. Lawrence, whereas invasive species and fishing activities were higher along the Atlantic coast. Sixty-four percent of bays were at risk of seagrass decline from nitrogen loading. We also found high within-bay variation in impact intensity, emphasizing the necessity of quantifying impacts at multiple spatial scales. We discuss implications for management and conservation planning, and application to other coastal habitats in Canada and beyond.
- OPEN ACCESS
- Beth C. Norman,
- Paul C. Frost,
- Graham C. Blakelock,
- Scott N. Higgins,
- Md Ehsanul Hoque,
- Jennifer L. Vincent,
- Katarina Cetinic, and
- Marguerite A. Xenopoulos
Silver nanoparticles (AgNPs) are an emerging class of contaminants with the potential to impact ecosystem structure and function. AgNPs are antimicrobial, suggesting that microbe-driven ecosystem functions may be particularly vulnerable to AgNP exposure. Predicting the environmental impacts of AgNPs requires in situ investigation of environmentally relevant dosing regimens over time scales that allow for ecosystem-level responses. We used 3000 L enclosures installed in a boreal lake to expose plankton communities to chronic and pulse AgNP dosing regimens with concentrations mimicking those recorded in natural waters. We compared temporal patterns of plankton responses, Ag accumulation, and ecosystem metabolism (i.e., daily ecosystem respiration, gross primary production, and net ecosystem production) for 6 weeks of chronic dosing and 3 weeks following a pulsed dose. Ag accumulated in microplankton and zooplankton, but carbon-specific Ag was nonlinear over time and generally did not predict plankton response. Ecosystem metabolism did not respond to either AgNP exposure type. This lack of response corresponded with weak microplankton responses in the chronic treatments but did not reflect the stronger microplankton response in the pulse treatment. Our results suggest that lake ecosystem metabolism is somewhat resistant to environmentally relevant concentrations of AgNPs and that organismal responses do not necessarily predict ecosystem-level responses. - OPEN ACCESSPrey individuals employ several adaptive behaviours to reduce predation risk. We need to learn how those behaviours interact in an overall strategy of risk management, how strategies vary with changing conditions, and whether some behaviours might compensate for others. I addressed these issues with manipulative experiments evaluating how snowshoe hares’ (Lepus americanus) vigilance varies with their giving-up densities (GUDs) in artificial food patches. I tested whether the results, collected when there was no evidence of predation, were congruent with an earlier study under higher predation. When predator sign was common, vigilance depended directly on habitat. But when risk was low, habitat’s influence on vigilance was indirect. Hares were least vigilant during the new moon where the distance to escape habitat was far, but only in open risky habitat. Hares were more vigilant during the full moon, but only at stations far from escape habitat. Moon phase and additional cover had no effect on GUDs that were highest at open risky stations far from escape habitat. The results suggest that reduced risk allowed hares to allocate less time to vigilance, but they needed to forage for similar amounts of food during each moon phase to maintain their energetic state.