Applied Filters
- Earth and Environmental Sciences
- Integrative SciencesRemove filter
Journal Title
Topics
Publication Date
Author
- Lotze, Heike K4
- Boyce, Daniel G3
- Cheung, William W L3
- Rochman, Chelsea M3
- Atlas, William I2
- Bernstein, Sarah2
- Blanchard, Julia L2
- Bryndum-Buchholz, Andrea2
- Chan, Hing Man2
- Cooke, Steven J2
- Corcoran, Patricia L2
- Finkelstein, Sarah A2
- Fuller, Susanna D2
- Housty, William G2
- Huntington, Aimee2
- Jantunen, Liisa2
- Loder, Amanda L2
- Maury, Olivier2
- Medeiros, Andrew Scott2
- Moore, Jonathan W2
- Palacios-Abrantes, Juliano2
- Rubidge, Emily M2
- Shackell, N L2
- Shackell, Nancy2
- Stanley, R R E2
Access Type
1 - 20of59
Save this search
Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Filters
You do not have any saved searches
- OPEN ACCESS
- Amanda L. Loder,
- Adam Gillespie,
- Omid Haeri Ardakani,
- Cecilia Cordero Oviedo, and
- Sarah A. Finkelstein
Reported rates of soil organic carbon (SOC) accumulation in wetlands are markedly higher over recent versus longer timescales, caused by SOC losses through decomposition, paleoenvironmental changes, and recent increases in sedimentation or biomass production. Explaining changes in SOC sequestration rates and determining the time horizon over which high rates are sustained are both critical for accurately measuring the potential for wetland conservation as a natural climate solution. Here, we present analyses on a 4-m core from a riverine-influenced marsh in Big Creek watershed, southern Ontario, to track changes in SOC accumulation regimes. Since wetland initiation ∼5700 years ago, mean long-term (pre-industrial) rates of SOC accumulation were 24 g C m−2 year−1, and recent rates up to four times higher. We demonstrate that elevated recent rates of SOC accumulation are largely explained by more labile carbon in surficial soils, and are sustained for less than a century before transitioning to slower burial rates of predominantly recalcitrant organic matter. However, there are exceptions to this trend, such as when labile SOC was buried intermittently during Holocene Lake Erie highstands. Our research underscores the importance of organic matter type and hydroclimatic context in predicting long-term potential for marsh soils to stabilize atmospheric carbon. - OPEN ACCESSWalleye/ogaa (Sander vitreus (Mitchill)) (hereafter, walleye; ogaa = Ojibwe translation) populations have historically supported important multi-use, harvest-oriented fisheries. Despite intensive management, walleye populations have declined in the midwestern United States raising concerns about the sustainability of the species. Numerous factors have been implicated in walleye population declines, including climate change, habitat loss, invasive species, species-interactions, production overharvest (i.e., harvest consistently exceeding annual production), and changing angler behaviors. These factors have negatively influenced natural recruitment and contributed to depensatory recruitment dynamics. I provide a review and perspective suggesting that the current trajectory of walleye populations is at or nearing an ecological tipping point. Although fish populations are often considered compensatory (i.e., negatively density-dependent), current walleye populations appear prone to depensation (i.e., positive density dependence). My review and perspective suggest that a compensatory management perspective for walleye is misaligned. A change in management towards a depensatory resource focus using ecosystem-based fisheries management and the recognition of walleye fisheries as social–ecological systems is needed for conservation. If compensatory management ensues, walleye persistence will likely be further threatened because many drivers of change are outside of managerial control, and those commonly used within managerial control have seemingly been ineffective for sustaining or rehabilitating naturally reproducing walleye populations.
- OPEN ACCESS
- Graham Epstein,
- Susanna D. Fuller,
- Sophia C. Johannessen,
- Emily M. Rubidge,
- Melissa Turner, and
- Julia K. Baum
Marine conserved areas (MCAs) can provide a range of ecological and socio-economic benefits, including climate change mitigation from the protection and enhancement of natural carbon storage. Canada's MCA network is expanding to encompass 30% of its Exclusive Economic Zone by 2030. At present, the network aims to integrate climate change mitigation by protecting coastal vegetated blue carbon ecosystems (saltmarsh, seagrass, kelp). Here, we argue that incorporating unvegetated seabed sediments could bring similar benefits. Seabed sediments can store and/or accumulate high densities of organic carbon, and due to their large spatial extent, contain carbon stores orders of magnitude larger than coastal vegetated habitats. We estimate that currently designated MCAs encompass only 10.8% of Canada's seabed sediment organic carbon stocks on the continental margin, and only 13.4% of areas with high carbon densities. Proposed MCAs would cover an additional 8.8% and 6.1% of total stocks and high carbon areas, respectively. We identify an additional set of high-priority seabed areas for future research and potential protection, ranking their importance based on carbon stocks, proxies for lability, and ecological/biological significance. The incorporation of seabed sediments into MCA networks could support climate change mitigation by preventing future releases of stored carbon. - OPEN ACCESS
- Breanna Bishop,
- Emmelie Paquette,
- Natalie Carter,
- Gita Ljubicic,
- Eric C.J. Oliver, and
- Claudio Aporta
Environmental indicators are naturally occurring variables, conditions, and events that are used to assess and monitor environmental conditions and change. Inuit throughout Inuit Nunaat (Inuit circumpolar homelands) observe and experience environmental indicators as they travel year-round for harvesting and other cultural practices. Inuit draw on their observations of current conditions and their knowledge of weather, water, ice, and climate (WWIC) indicators, when seeking to predict and understand conditions that impact safe travel. This scoping review documents the types and diversity of WWIC indicators articulated in peer-reviewed and grey literature as being used by Inuit in Canada, Alaska, and Greenland to assess travel safety. Two reviewers independently screened 512 studies using pre-determined eligibility criteria and 123 studies were included for review. A total of 163 unique WWIC indicators were used across 85 communities in Canada, Alaska, and Greenland. Indicators reflect a broad range of ways that Inuit experience their environment, through sight, feel, and sound. Indicators can be considered as causal, conditional, or predictive (or a combination thereof), where knowledge of the interactions among various indicators is especially important to support safe travel. Identified gaps and future research directions included assessing key indicators to better target development of locally relevant research and information services. - OPEN ACCESS
- Ha Pham and
- Marc Saner
Inclusion has been gaining increased attention in various domains, including education and the workplace, as well as development, governance, urbanization, and innovation. However, in the context of climate change adaptation (CCA), the concept of “inclusiveness” remains comparatively underexplored, with no overarching framework available. This gap is crucial, given the global scope and multifaceted nature of climate change, which demands a comprehensive and inclusive approach. In this article, we address this deficiency by developing a comprehensive conceptualization of inclusive climate change adaptation (ICCA). Grounded in ethical analysis, our framework is presented for discussion and practical testing. We identify nine specific priority areas and propose one to two qualitative indicators for each, resulting in a suite of 15 indicators for the evaluation of ICCA policies. This research not only highlights the urgency of incorporating inclusiveness into CCA, but it also provides a practical framework by which to guide policymakers, practitioners, and researchers in this critical endeavor. By acknowledging and accommodating diverse value systems and considering the entire policy process, from conception to evaluation, we aim to foster a more inclusive and sustainable approach to CCA. - OPEN ACCESSMarine protected areas (MPAs) are critical in safeguarding biodiversity and ecosystem functions under climate change. The long-term effectiveness of these static conservation measures will depend on how well they represent current and future ocean changes. Here, we use the Climate Risk Index for Biodiversity to assess the vulnerability representation of marine ecosystems within the Canadian marine conservation network (CMCN) under two divergent emissions scenarios. We found that MPAs best represent climate vulnerability in Atlantic Canada (85% representativity overall, and 93% in the Gulf of Saint Lawrence under low emissions), followed by the Pacific (78%) and Arctic (63%; lowest in the Eastern Arctic (41% under high emissions) regions). Notably, MPAs with lower climate vulnerability are proportionally overrepresented in the CMCN. Broad-scale geographic targets employed in the Scotian Shelf-Bay of Fundy network planning process achieve over 90% representativity of climate vulnerabilities, underscoring the importance of ensuring habitat representativity and geographic distribution in conservation planning to enhance climate resilience, even if not explicitly prioritized. Moving towards Canada’s target to protect 30% of its waters by 2030, prioritizing representativity and designation of MPAs in currently underrepresented climate-vulnerable regions may be crucial to enhancing the resilience of the CMCN amidst an ever-changing climate.
- OPEN ACCESSReintroduction is an important tool in the conservation and recovery of aquatic species at risk. However, components of the reintroduction process such as transportation have the potential to induce physiological stress and the extent to which preparatory techniques can mitigate this stress is poorly understood in small-bodied fishes. To address this concern, we studied the effect of transport on two fitness-related performance measures: maximum metabolic rate and thermal tolerance in redside dace (Clinostomus elongatus), an imperilled small-bodied stream fish native to eastern North America. Prior to transportation, we manipulated the body condition of redside dace over a 12-week period, by providing either low (1% of their total body mass) or high (2% of their total body mass) rations. The goal of this manipulation was to influence body condition, as higher body condition can enhance physiological performance. Subsequently, redside dace were transported for varying durations: 0, 3, and 6 h. Following transportation, we measured maximum metabolic rate (µmol/h) and thermal tolerance (CTmax, °C). Our results indicate that neither transport nor body condition had a significant effect on maximum metabolic rate or thermal tolerance (CTmax). These findings provide preliminary evidence that redside dace can physiologically tolerate transport based on the endpoints measured and this information may possibly be extended to other small-bodied fish, for which information is lacking.
- OPEN ACCESS
- Colin J. Whitfield,
- Emily Cavaliere,
- Helen M. Baulch,
- Robert G. Clark,
- Christopher Spence,
- Kevin R. Shook,
- Zhihua He,
- John W. Pomeroy, and
- Jared D. Wolfe
In many regions, a tradeoff exists between draining wetlands to support the expansion of agricultural land, and conserving wetlands to maintain their valuable ecosystem services. Decisions about wetland drainage are often made without identifying the impacts on the services these systems provide. We address this gap through a novel assessment of impacts on ecosystem services via wetland drainage in the Canadian prairie landscape. Draining pothole wetlands has large impacts, but sensitivity varies among the indicators considered. Loss of water storage increased the magnitude of median annual flows, but absolute increases with drainage were higher for larger, less frequent events. Total phosphorus exports increased in concert with streamflow. Our analysis suggested disproportionate riparian habitat losses with the first 30% of wetland area drained. Dabbling ducks and wetland-associated bird abundances respond strongly to the loss of small wetland ponds; abundances were predicted to decrease by half with the loss of only 20%–40% of wetland area. This approach to evaluating changes to key wetland ecosystem services in a large region where wetland drainage is ongoing can be used with an economic valuation of the drainage impacts, which should be weighed against the benefits associated with agricultural expansion. - OPEN ACCESS
- Steven J. Cooke,
- Andy J. Danylchuk,
- Joel Zhang,
- Vivian M. Nguyen,
- Len M. Hunt,
- Robert Arlinghaus,
- Kathryn J. Fiorella,
- Hing Man Chan, and
- Tony L. Goldberg
Recreational fisheries involve an intimate connection between people, individual fish, and the environment. Recreational fishers and their health crucially depend on healthy fish and ecosystems. Similarly, fish and ecosystems can be impacted by the activities of people including recreational fishers. Thus, amplified by the global interest in recreational fishing, we posit that recreational fishing is particularly suited as an empirical system to explore a One Health perspective, with a goal of creating pathways to better manage such socio-ecological systems for the benefit of people, fish, and the environment. Although zoonoses are uncommon in fishes, fish can carry pathogens, biotoxins, or contaminants that are harmful to people. When captured and released, fish can experience stress and injuries that may promote pathogen development. Similarly, when humans contribute to environmental degradation, not only are fish impacted but so are the humans that depend on them for nutrition, livelihoods, culture, and well-being. Failure to embrace the One Health perspective for recreational fisheries has the potential to negatively impact the health of fish, fisheries, people, society, and the aquatic environment—especially important since these complex social–ecological systems are undergoing rapid change. - OPEN ACCESSWith the influence of climate change on marine systems expanding, climate adaptation will be fundamental for the future of fisheries management. An exponential increase in Atlantic halibut Hippoglossus hippoglossus landings over the past decade has coincided with warming ocean temperatures. Here, we explore how historical changes in abundance have been linked to changing thermal habitat conditions and project trends with a warming climate under different emissions scenarios. From 1990 to 2018, available thermal habitat increased by 11.6 ± 7.35% and growing degree days have increased by 13.5 ± 7.86 °C·days across the region. With warming, the probability of occurrence is projected to increase up to 20.5% in Canada by 2085 under RCP 8.5 for Atlantic halibut. Our results suggest that shifting patterns of halibut distribution and abundance are linked to thermal conditions and that continued warming will likely continue to enhance habitat conditions, leading to increased abundance in the Canadian range. Collectively, these results illustrate the influence of shifting environmental conditions on population dynamics and emphasize the importance of adaptive management practices in a dynamic future climate.
- OPEN ACCESSTrash capture devices (TCDs) are a rapidly evolving tool for municipal governments, non-governmental organizations, and industries to divert litter from our waterways. Here, we introduce protocols to initiate trash trapping projects to quantify and characterize captured anthropogenic litter based on a case study using Seabins. In addition, we have introduced a network for global data collection via TCDs. Our first protocol is a visual audit of the potential site to inform the type and location for TCD deployment. Our next two protocols quantify and characterize the litter captured by TCDs: (1) a simple protocol intended for daily monitoring and (2) a detailed protocol to characterize and quantify all large debris (>3 cm) and a subset of the small debris (2 mm–3 cm) caught in the devices. Using Seabins in the Toronto Harbour to test our methodology, we found that our subsampling methodology has a 6.9% error rate. Over a 19-week period, the Seabins captured ∼85 000 pieces of small debris. Our study highlights the utility of TCDs and proposes methods to realize this utility globally. TCDs should become more widespread and utilized as a triple threat: a cleanup tool, a data collection tool, and a platform for outreach and education.
- OPEN ACCESS
- Juliano Palacios-Abrantes,
- Sarah M. Roberts,
- Talya ten Brink,
- Tim Cashion,
- William W.L. Cheung,
- Anne Mook, and
- Tu Nguyen
The world has set ambitious goals to protect marine biodiversity and improve ocean health in the face of anthropogenic threats. Yet, the efficiency of spatial tools such as marine reserves to protect biodiversity is threatened as climate change shifts species distributions globally. Here, we investigate the ability of global marine reserves to protect fish biomass under future climate change scenarios. Moreover, we explore regional patterns and compare worlds with and without marine reserves. We rely on computer modeling to simulate an utopian world where all marine reserves thrive and ocean governance is effective. Results suggest that climate change will affect fish biomass in most marine reserves and their surrounding waters throughout the 21st century. The biomass change varies among regions, with tropical reserves losing biomass, temperate ones gaining, and polar reserves having mixed effects. Overall, a world with marine reserves will still be better off in terms of fish biomass than a world without marine reserves. Our study highlights the need to promote climate resilient conservation methods if we are to maintain and recover biodiversity in the ocean under a changing world. - OPEN ACCESSDinerstein et al. present a spatially explicit global framework for protected areas needed to reverse catastrophic biodiversity losses and stabilize climate. The Province of Ontario (Canada) stands out in this “Global Safety Net (GSN)” as a critical jurisdiction for meeting those goals, because of both the large extent of roadless lands and high carbon storage in terrestrial ecosystems. Simultaneously, pressure is increasing to develop unmanaged lands in Ontario, particularly in the Far North, for resource extraction. Here, we extract data from the GSN to identify and calculate the areal extent of target regions present in Ontario and critically review the results in terms of accuracy and implications for conservation. We show that when region-specific data are incorporated, Ontario is even more significant than what is shown in the GSN, especially in terms of carbon stocks in forested and open peatlands. Additionally, the biodiversity metrics used in the GSN only partially capture opportunities for conservation in Ontario, and the officially recognized extent of Indigenous lands vastly underestimates the role of First Nations in conservation. Despite these limitations, our analyses indicate that Ontario plays an outsized role in terms of its potential to impact the trajectories both of biodiversity and climate globally.
- OPEN ACCESSSeasonal variation in seagrass growth and senescence affects the provision of ecosystem services and restoration efforts, requiring seasonal monitoring. Remotely piloted aircraft systems (RPAS) enable frequent high-resolution surveys at full-meadow scales. However, the reproducibility of RPAS surveys is challenged by varying environmental conditions, which are common in temperate estuarine systems. We surveyed three eelgrass (Zostera marina) meadows in Newfoundland, Canada, using an RPAS equipped with a three-color band (red, green, blue [RGB]) camera, to evaluate the seasonal reproducibility of RPAS surveys and assess the effects of flight altitude (30–115 m) on classification accuracy. Habitat percent cover was estimated using supervised image classification and compared to corresponding estimates from snorkel quadrat surveys. Our results revealed inconsistent misclassification due to environmental variability and low spectral separability between habitats. This rendered differentiating between model misclassification versus actual changes in seagrass cover infeasible. Conflicting estimates in seagrass and macroalgae percent cover compared to snorkel estimates could not be corrected by decreasing the RPAS altitude. Instead, higher altitude surveys may be worth the trade-off of lower image resolution to avoid environmental conditions shifting mid-survey. We conclude that RPAS surveys using RGB imagery alone may be insufficient to discriminate seasonal changes in estuarine subtidal vegetated habitats.
- OPEN ACCESSAlthough Canada’s oceans are a public resource, commercial fisheries data are routinely withheld from researchers and the general public by Fisheries and Oceans Canada (DFO) due to privacy obligations. However, data can be released if considered sufficiently de-personalized through an internal guideline called the “rule of five,” under which data sources are aggregated to a threshold of five to allow for data publication or disclosure. This article provides an overview of the “rule of five,” summarizes key legislative provisions that have bearing on the “rule” and potential for its reform, and discusses the findings from two tools used to collect information on the “rule” and its use in Canada: (1) an Access to Information and Privacy request and (2) an anonymous survey conducted to evaluate the impacts of the “rule” on various stakeholders. The “rule of five” is not mandatory but rather represents a conservative approach to access to information that can be detrimental to independent researchers and the public interest in transparent fisheries data. The article concludes with recommendations to further a rebalancing of privacy and access to information, including emphasizing existing legislative exemptions that could allow for data disclosure when the “rule of five” is not met.
- OPEN ACCESSClimate change affects virtually all marine life and is increasingly a dominant concern for fisheries, reinforcing the need to incorporate climate variability and change when managing fish stocks. Canada is expected to experience widespread climate-driven impacts on its fisheries but does not yet have a clear adaptation strategy. Here, we provide an overview of a project we are developing, the Climate Adaptation Framework for Fisheries, to address this need and support climate adaptation in Canadian marine fisheries. The framework seeks to quantitatively and flexibly evaluate species, fishing infrastructure, and the management and operation of fisheries to assess climate vulnerability comprehensively and provide outputs that can support climate adaptation planning across different sectors, agencies, and stakeholders. This new framework should allow future climate scenarios to be evaluated and identify actionable climate vulnerabilities related to the management of fisheries, creating a systematic approach to supporting climate adaptation in Canada’s fisheries.
- OPEN ACCESSMarine Protected Areas (MPAs) are conservation tools that promote biodiversity by regulating human impacts. However, because MPAs are fixed in space and, by design, difficult to change, climate change may challenge their long-term effectiveness. It is therefore imperative to consider anticipated ecological changes in their design. We predict the time of emergence (ToE: year when temperatures will exceed a species’ tolerance) of 30 fish and invertebrate species in the Scotian Shelf-Bay of Fundy draft network of conservation areas based on climate projections under two contrasting emission scenarios (RCP 2.6 and RCP 8.5). We demonstrate a strong Southwest-to-Northeast gradient of change under both scenarios. Cold water-associated species had earlier ToEs, particularly in southwesterly areas. Under low emissions, 20.0% of habitat and 12.6% of species emerged from the network as a whole by 2100. Under high emissions, 51% of habitat and 42% of species emerged. These impacts are expected within the next 30–50 years in some southwestern areas. The magnitude and velocity of change will be tempered by reduced emissions. Our identification of high- and low-risk areas for species of direct and indirect conservation interest can support decisions regarding site and network design (and designation scheduling), promoting climate resilience.
- OPEN ACCESSThe creation and deployment of plastic structures made out of pipes and panels in freshwater ecosystems to enhance fish habitat or restore freshwater systems have become popularized in some regions. Here, we outline concerns with these activities, examine the associated evidence base for using plastic materials for restoration, and provide some suggestions for a path forward. The evidence base supporting the use of plastic structures in freshwater systems is limited in terms of ecological benefit and assurances that the use of plastics does not contribute to pollution via plastic degradation or leaching. Rarely was a cradle-to-grave approach (i.e. the full life cycle of restoration as well as the full suite of environmental consequences arising from plastic creation to disposal) considered nor were decommissioning plans required for deployment of plastic habitats. We suggest that there is a need to embrace natural materials when engaging in habitat restoration and provide more opportunities for relevant actors to have a voice regarding the types of materials used. It is clear that restoration of freshwater ecosystems is critically important, but those efforts need to be guided by science and not result in potential long-term harm. We conclude that based on the current evidence base, the use of plastic for habitat enhancement or restoration in freshwater systems is nothing short of littering.
- OPEN ACCESS
- Tyler D. Eddy,
- Daniel Duplisea,
- Matthew D. Robertson,
- Raquel Ruiz-Díaz,
- C. Abraham Solberg, and
- Fan Zhang
Fish populations are dynamic; their productivity depends on the environment, predator and prey interactions, and fisheries harvest rates. Failure to account for these factors in fisheries science and management can lead to a misestimation of stock dynamics and productivity, resulting in overexploitation or forgone fisheries yield. Using an online survey, we asked fisheries scientists, industry stakeholders, Indigenous partners, and non-governmental organizations whether changing ecosystem productivity was a problem in their experience, how often dynamic approaches to fisheries reference points have been adopted, what methods had been used, and what fisheries they had been applied to. Changing fisheries or ecosystem productivity was reported as an issue by 96% of respondents; however, 74% of respondents said they had never seen dynamic reference points implemented, 16% said in very few instances, while 10% said frequently. The most common barriers to implementation of dynamic approaches in fisheries management were institutional inertia and uncertainty about whether a change in productivity was lasting. We discuss trade-offs between fisheries management performance and stability. - OPEN ACCESSThe impact of the southern Gulf of St. Lawrence American lobster (Homarus americanus) fishery on species bycatch is currently unknown. The composition of the incidental catch, both nonharvestable lobster (by fisheries regulations) and nonlobster species, was systematically collected over the 2015 spring and summer fishing seasons. A total of 51 948 (7147 were nonlobster taxa) individual organisms weighing 13 987.60 kg (1223.91 kg of nonlobster taxa) were captured as bycatch during 73 fishing trips. By weight per trip, the most common lobster bycatch were undersized male and females, and the highest nonlobster species catch were Atlantic rock crab (Cancer irroratus). A semiquantitative assessment of injury and vitality was applied to bycatch as a proxy for discard mortality. The majority of the individuals assessed for visible injury were deemed uninjured (98% both fish and invertebrates); however, postrelease mortality was not measured. A smaller study in 2019 corroborated the 2015 catches and supported current assumptions that the passive gear type, the low diversity of bycatch, and the rapid hand-sorting of the trap minimize the impact of the lobster fishery on incidentally captured taxa. Further scientific monitoring is recommended to better account for all sources of mortality in stock assessments and rebuilding plans.