Applied Filters
- Integrative Sciences
- Mallory, Mark LRemove filter
Journal Title
Topics
Publication Date
Author
- Provencher, Jennifer F2
- Aiken, Alice1
- Amirfazli, Alidad1
- Anastakis, Dimitry1
- Ansari, Daniel1
- Antle, Alissa N1
- Avery-Gomm, Stephanie1
- Baak, Julia E1
- Babel, Molly1
- Bailey, Jane1
- Barry, Tom1
- Bernstein, Daniel M1
- Birnbaum, Rachel1
- Bond, Alexander L1
- Borrelle, Stephanie B1
- Bourassa, Carrie1
- Bowron, Tony M1
- Brazner, John1
- Calcagno, Antonio1
- Campana, Aurélie1
- Chen, Bing1
- Collins, Karen1
- Connelly, Catherine E1
- Cooke, Steven J1
Access Type
1 - 4of4
Save this search
Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Filters
Search Name | Searched On |
---|---|
[Subject Areas: Science and Society] AND [Author: Bowden, Joseph J] (2) | 7 Apr 2025 |
[Subject Areas: Integrative Sciences] AND [Author: Mallory, Mark L] (4) | 7 Apr 2025 |
You do not have any saved searches
- OPEN ACCESS
- Jannie F. Linnebjerg,
- Julia E. Baak,
- Tom Barry,
- Maria V. Gavrilo,
- Mark L. Mallory,
- Flemming R. Merkel,
- Courtney Price,
- Jakob Strand,
- Tony R. Walker, and
- Jennifer F. Provencher
Marine plastic is a ubiquitous environmental problem that can have an impact on a variety of marine biota, such as seabirds, making it an important concern for scientists and policy makers. Although research on plastic ingestion by seabirds is increasing, few studies have examined policies and long-term monitoring programs to reduce marine plastic in the Arctic. This paper provides a review of international, national, and regional policies and long-term monitoring programs that address marine plastic in relation to seabirds in the Arctic countries: Canada, the Kingdom of Denmark (Greenland and the Faroe Islands), Finland, Iceland, Norway, the Russian Federation, Sweden, and the United States of America. Results show that a broad range of international, national, regional and local policies address marine debris, specifically through waste management and the prevention of pollution from ships. However, few policies directly address seabirds and other marine biota. Further, policies are implemented inconsistently across regions, making it difficult to enforce and monitor the efficacy of these policies given the long-range transport of plastic pollution globally. To reduce marine plastic pollution in the Arctic environment, pan-Arctic and international collaboration is needed to implement standardized policies and long-term monitoring programs for marine plastic in the Arctic and worldwide. - OPEN ACCESS
- Kate Sherren,
- Kirsten Ellis,
- Julia A. Guimond,
- Barret Kurylyk,
- Nicole LeRoux,
- Jeremy Lundholm,
- Mark L. Mallory,
- Danika van Proosdij,
- Allison K. Walker,
- Tony M. Bowron,
- John Brazner,
- Lisa Kellman,
- B. L. Turner II, and
- Emily Wells
We review what is known about ecosystem service (ES) delivery from agricultural dykelands and tidal wetlands around the dynamic Bay of Fundy in the face of climate change and sea-level rise, at the outset of the national NSERC ResNet project. Agricultural dykelands are areas of drained tidal wetland that have been converted to agricultural lands and protected using dykes and aboiteaux (one-way drains or sluices), first introduced by early French settlers (Acadians). Today, Nova Scotia’s 242 km system of dykes protect 17,364 ha of increasingly diverse land uses—including residential, industrial, and commercial uses as well as significant tourism, recreational, and cultural amenities—and is undergoing system modernization and adaptation. Different ES are provided by drained and undrained landscapes such as agriculture from dykelands and regulating services from wetlands, but more complex dynamics exist when beneficiaries are differentiated. This review reveals many knowledge gaps about ES delivery and dynamics, including around net greenhouse gas implications, storm protection, water quality, fish stocks, pollination processes, sense of place, and aesthetics, some of which may reveal shared ES or synergies instead of trade-offs. We emphasize the need to be open to adapting ES concepts and categorizations to fully understand Indigenous implications of these land use decisions. - OPEN ACCESS
- Steven J. Cooke,
- Vivian M. Nguyen,
- Dimitry Anastakis,
- Shannon D. Scott,
- Merritt R. Turetsky,
- Alidad Amirfazli,
- Alison Hearn,
- Cynthia E. Milton,
- Laura Loewen,
- Eric E. Smith,
- D. Ryan Norris,
- Kim L. Lavoie,
- Alice Aiken,
- Daniel Ansari,
- Alissa N. Antle,
- Molly Babel,
- Jane Bailey,
- Daniel M. Bernstein,
- Rachel Birnbaum,
- Carrie Bourassa,
- Antonio Calcagno,
- Aurélie Campana,
- Bing Chen,
- Karen Collins,
- Catherine E. Connelly,
- Myriam Denov,
- Benoît Dupont,
- Eric George,
- Irene Gregory-Eaves,
- Steven High,
- Josephine M. Hill,
- Philip L. Jackson,
- Nathalie Jette,
- Mark Jurdjevic,
- Anita Kothari,
- Paul Khairy,
- Sylvie A. Lamoureux,
- Kiera Ladner,
- Christian R. Landry,
- François Légaré,
- Nadia Lehoux,
- Christian Leuprecht,
- Angela R. Lieverse,
- Artur Luczak,
- Mark L. Mallory,
- Erin Manning,
- Ali Mazalek,
- Stuart J. Murray,
- Lenore L. Newman,
- Valerie Oosterveld,
- Patrice Potvin,
- Sheryl Reimer-Kirkham,
- Jennifer Rowsell,
- Dawn Stacey,
- Susan L. Tighe,
- David J. Vocadlo,
- Anne E. Wilson, and
- Andrew Woolford
Various multiple-disciplinary terms and concepts (although most commonly “interdisciplinarity,” which is used herein) are used to frame education, scholarship, research, and interactions within and outside academia. In principle, the premise of interdisciplinarity may appear to have many strengths; yet, the extent to which interdisciplinarity is embraced by the current generation of academics, the benefits and risks for doing so, and the barriers and facilitators to achieving interdisciplinarity, represent inherent challenges. Much has been written on the topic of interdisciplinarity, but to our knowledge there have been few attempts to consider and present diverse perspectives from scholars, artists, and scientists in a cohesive manner. As a team of 57 members from the Canadian College of New Scholars, Artists, and Scientists of the Royal Society of Canada (the College) who self-identify as being engaged or interested in interdisciplinarity, we provide diverse intellectual, cultural, and social perspectives. The goal of this paper is to share our collective wisdom on this topic with the broader community and to stimulate discourse and debate on the merits and challenges associated with interdisciplinarity. Perhaps the clearest message emerging from this exercise is that working across established boundaries of scholarly communities is rewarding, necessary, and is more likely to result in impact. However, there are barriers that limit the ease with which this can occur (e.g., lack of institutional structures and funding to facilitate cross-disciplinary exploration). Occasionally, there can be significant risk associated with doing interdisciplinary work (e.g., lack of adequate measurement or recognition of work by disciplinary peers). Solving many of the world’s complex and pressing problems (e.g., climate change, sustainable agriculture, the burden of chronic disease, and aging populations) demands thinking and working across long-standing, but in some ways restrictive, academic boundaries. Academic institutions and key support structures, especially funding bodies, will play an important role in helping to realize what is readily apparent to all who contributed to this paper—that interdisciplinarity is essential for solving complex problems; it is the new norm. Failure to empower and encourage those doing this research will serve as a great impediment to training, knowledge, and addressing societal issues. - OPEN ACCESS
- Jennifer F. Provencher,
- Stephanie B. Borrelle,
- Alexander L. Bond,
- Jennifer L. Lavers,
- Jan A. van Franeker,
- Susanne Kühn,
- Sjúrður Hammer,
- Stephanie Avery-Gomm, and
- Mark L. Mallory
Marine plastic pollution is an environmental contaminant of significant concern. There is a lack of consistency in sample collection and processing that continues to impede meta-analyses and large-scale comparisons across time and space. This is true for most taxa, including seabirds, which are the most studied megafauna group with regards to plastic ingestion research. Consequently, it is difficult to evaluate the impacts and extent of plastic contamination in seabirds fully and accurately, and to make inferences about species for which we have little or no data. We provide a synthesized set of recommendations specific for seabirds and plastic ingestion studies that include best practices in relation to sample collection, processing, and reporting, as well as highlighting some “cross-cutting” methods. We include guidance for how carcasses, regurgitations, and pellets should be handled and treated to prevent cross-contamination, and a discussion of what size class of microplastics can be assessed in each sample type. Although we focus on marine bird samples, we also include standardized techniques to remove sediment and biological material that are generalizable to other taxa. Lastly, metrics and data presentation of ingested plastics are briefly reviewed in the context of seabird studies.