Applied Filters
- Marine and Aquatic Sciences
Journal Title
Topics
- Earth and Environmental Sciences102
- Integrative Sciences42
- Biological and Life Sciences32
- Conservation and Sustainability29
- Ecology and Evolution25
- Geosciences8
- Science and Policy8
- Biomedical and Health Sciences4
- Science and Society4
- Zoology4
- Genetics and Genomics3
- Atmospheric and Climate Sciences2
- Chemistry2
- Clinical Sciences2
- Epidemiology2
- Physical Sciences2
- Science Communication1
Publication Date
Author
- Lotze, Heike K4
- Boyce, Daniel G3
- Cheung, William W L3
- Corcoran, Patricia L3
- Hall, Britt D3
- Miller, Kristina M3
- Rochman, Chelsea M3
- Tabata, Amy3
- Vermaire, Jesse C3
- Atlas, William I2
- Ban, Natalie C2
- Bernstein, Sarah2
- Blanchard, Julia L2
- Bryndum-Buchholz, Andrea2
- Burd, Brenda J2
- Chan, Hing Man2
- Coffin, Michael R S2
- Cooke, Steven J2
- Courtenay, Simon C2
- Headley, John V2
- Housty, William G2
- Huntington, Aimee2
- Jantunen, Liisa2
- Knysh, Kyle M2
- Li, Shaorong2
Access Type
61 - 80of102
Save this search
Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Filters
Search Name | Searched On |
---|---|
Subject Areas: Marine and Aquatic Sciences (102) | 21 Dec 2024 |
You do not have any saved searches
- OPEN ACCESSTrash capture devices (TCDs) are a rapidly evolving tool for municipal governments, non-governmental organizations, and industries to divert litter from our waterways. Here, we introduce protocols to initiate trash trapping projects to quantify and characterize captured anthropogenic litter based on a case study using Seabins. In addition, we have introduced a network for global data collection via TCDs. Our first protocol is a visual audit of the potential site to inform the type and location for TCD deployment. Our next two protocols quantify and characterize the litter captured by TCDs: (1) a simple protocol intended for daily monitoring and (2) a detailed protocol to characterize and quantify all large debris (>3 cm) and a subset of the small debris (2 mm–3 cm) caught in the devices. Using Seabins in the Toronto Harbour to test our methodology, we found that our subsampling methodology has a 6.9% error rate. Over a 19-week period, the Seabins captured ∼85 000 pieces of small debris. Our study highlights the utility of TCDs and proposes methods to realize this utility globally. TCDs should become more widespread and utilized as a triple threat: a cleanup tool, a data collection tool, and a platform for outreach and education.
- OPEN ACCESS
- Sachiko Ouchi,
- Lori Wilson,
- Colette C.C. Wabnitz,
- Christopher D. Golden,
- Anne H. Beaudreau,
- Tiff-Annie Kenny,
- Gerald G. Singh,
- William W.L. Cheung,
- Hing Man Chan, and
- Anne K. Salomon
Understanding mechanisms that promote social-ecological resilience can inform future adaptation strategies. Among seafood dependent communities, these can be illuminated by assessing change among fisheries portfolios. Here, in collaboration with a Coast Salish Nation in British Columbia, Canada, we used expert Indigenous knowledge and network analyses to chronicle differences in fisheries portfolios pre and post a social-ecological regime shift. We then evaluated key drivers of change using semi-structured interviews. We found that while portfolios decreased in diversity of seafood types harvested and consumed among individuals overtime, portfolios increased in their diversification at the community level because more similar seafoods within less diverse individual portfolios were more commonly harvested and consumed by the Nation as a whole. Thus, diversity can operate simultaneously in opposing directions at different scales of organization. Experts identified four key mechanisms driving these changes, including commercial activities controlled by a centralized governance regime, intergenerational knowledge loss, adaptive learning to new ecological and economic opportunities, and the trading of seafood with other Indigenous communities. Unexpectedly, increased predation by marine mammals was also flagged as a key driver of change. Adaptation strategies that support access to and governance of diverse fisheries, exchange of seafoods among communities, and knowledge transfer among generations would promote social-ecological resilience, food security, and community well-being. - OPEN ACCESS
- Jessica Garzke,
- Ian Forster,
- Sean C. Godwin,
- Brett T. Johnson,
- Martin Krkošek,
- Natalie Mahara,
- Evgeny A. Pakhomov,
- Luke A. Rogers, and
- Brian P.V. Hunt
Migrating marine taxa encounter diverse habitats that differ environmentally and in foraging conditions over a range of spatial scales. We examined body (RNA/DNA, length-weight residuals) and nutritional (fatty acid composition) condition of juvenile sockeye salmon (Oncorhynchus nerka) in British Columbia, while migrating through oceanographically variable waters. Fish were sampled in the stratified northern Strait of Georgia (NSoG); the highly mixed Johnstone Strait (JS); and the transitional zone of Queen Charlotte Strait (QCS). In 2015, body and nutritional condition were high in the NSoG but rapidly declined to reach lowest levels in JS where prey availability was low, before showing signs of compensatory growth in QCS. In 2016, juvenile salmon had significantly lower condition in the NSoG than in 2015, although zooplankton biomass was similar, condition remained low in JS, and no compensatory growth was observed in QCS. We provide evidence that differences in juvenile salmon condition between the two years were due to changes in the food quality available to juvenile fish. We propose that existing hypotheses about fish survival need to be extended to incorporate food quality in addition to quantity to understand changes in fish condition and survival between years. - OPEN ACCESS
- Juliano Palacios-Abrantes,
- Sarah M. Roberts,
- Talya ten Brink,
- Tim Cashion,
- William W.L. Cheung,
- Anne Mook, and
- Tu Nguyen
The world has set ambitious goals to protect marine biodiversity and improve ocean health in the face of anthropogenic threats. Yet, the efficiency of spatial tools such as marine reserves to protect biodiversity is threatened as climate change shifts species distributions globally. Here, we investigate the ability of global marine reserves to protect fish biomass under future climate change scenarios. Moreover, we explore regional patterns and compare worlds with and without marine reserves. We rely on computer modeling to simulate an utopian world where all marine reserves thrive and ocean governance is effective. Results suggest that climate change will affect fish biomass in most marine reserves and their surrounding waters throughout the 21st century. The biomass change varies among regions, with tropical reserves losing biomass, temperate ones gaining, and polar reserves having mixed effects. Overall, a world with marine reserves will still be better off in terms of fish biomass than a world without marine reserves. Our study highlights the need to promote climate resilient conservation methods if we are to maintain and recover biodiversity in the ocean under a changing world. - OPEN ACCESS
Evaluating community science sampling for microplastics in shore sediments of large river watersheds
A community science project in the Ottawa River Watershed in Canada interacted with an existing volunteer base to collect sediment from 68 locations in the watershed over approximately 750 km. Ninety-one percent of the distributed kits were returned with 42 volunteers taking part in the project. After analysis, particle concentrations were relatively low compared to previous freshwater microplastic sediment research, with contributing factors including (but not limited to) the large size of the watershed, a lower population base compared to other researched freshwater watersheds, the relative size and discharge of the Ottawa River and the large seasonal fluxes experienced in the river basin. Utilising community science for sampling large freshwater watersheds demonstrated its advantages in the research, especially spatially. However, careful consideration to research design and implementation is essential for community science projects examining microplastics in freshwater sediments. Research teams should ensure they are responsible for strict quality assurance and quality control protocols, especially in the laboratory with sample preparation and processing. Nonetheless, community science is potentially an extremely useful approach for researchers to use for microplastic sampling projects over large spatial areas. - OPEN ACCESS
- OPEN ACCESSAlthough many studies have focused on the importance of littering and (or) illegal dumping as a source of plastic pollution to freshwater, other relevant pathways should be considered, including wastewater, stormwater runoff, industrial effluent/runoff, and agricultural runoff. Here, we conducted a meta-analysis focused on these four pathways. We quantified the number of studies, amount and characteristics of microplastics reported, and the methods used to sample and measure microplastics from each pathway. Overall, we found 121 studies relevant to our criteria, published from 2014 to 2020. Of these, 54 (45%) quantified and characterized microplastics in discharge pathways. Although most focused on wastewater treatment plant effluent (85%), microplastic concentrations were highest in stormwater runoff (0.009 to 3862 particles/L). Morphologies of particles varied among pathways and sampling methods. For example, stormwater runoff was the only pathway with rubbery particles. When assessing methods, our analysis suggested that water filtered through a finer (<200 um) mesh and of a smaller volume (e.g., 6 L) captured more particles, and with a slightly greater morphological diversity. Overall, our meta-analysis suggested that all four pathways bring microplastics into freshwater ecosystems, and further research is necessary to inform the best methods for monitoring and to better understand hydrologic patterns that can inform local mitigation.
- OPEN ACCESSSeasonal variation in seagrass growth and senescence affects the provision of ecosystem services and restoration efforts, requiring seasonal monitoring. Remotely piloted aircraft systems (RPAS) enable frequent high-resolution surveys at full-meadow scales. However, the reproducibility of RPAS surveys is challenged by varying environmental conditions, which are common in temperate estuarine systems. We surveyed three eelgrass (Zostera marina) meadows in Newfoundland, Canada, using an RPAS equipped with a three-color band (red, green, blue [RGB]) camera, to evaluate the seasonal reproducibility of RPAS surveys and assess the effects of flight altitude (30–115 m) on classification accuracy. Habitat percent cover was estimated using supervised image classification and compared to corresponding estimates from snorkel quadrat surveys. Our results revealed inconsistent misclassification due to environmental variability and low spectral separability between habitats. This rendered differentiating between model misclassification versus actual changes in seagrass cover infeasible. Conflicting estimates in seagrass and macroalgae percent cover compared to snorkel estimates could not be corrected by decreasing the RPAS altitude. Instead, higher altitude surveys may be worth the trade-off of lower image resolution to avoid environmental conditions shifting mid-survey. We conclude that RPAS surveys using RGB imagery alone may be insufficient to discriminate seasonal changes in estuarine subtidal vegetated habitats.
- OPEN ACCESSAlthough Canada’s oceans are a public resource, commercial fisheries data are routinely withheld from researchers and the general public by Fisheries and Oceans Canada (DFO) due to privacy obligations. However, data can be released if considered sufficiently de-personalized through an internal guideline called the “rule of five,” under which data sources are aggregated to a threshold of five to allow for data publication or disclosure. This article provides an overview of the “rule of five,” summarizes key legislative provisions that have bearing on the “rule” and potential for its reform, and discusses the findings from two tools used to collect information on the “rule” and its use in Canada: (1) an Access to Information and Privacy request and (2) an anonymous survey conducted to evaluate the impacts of the “rule” on various stakeholders. The “rule of five” is not mandatory but rather represents a conservative approach to access to information that can be detrimental to independent researchers and the public interest in transparent fisheries data. The article concludes with recommendations to further a rebalancing of privacy and access to information, including emphasizing existing legislative exemptions that could allow for data disclosure when the “rule of five” is not met.
- OPEN ACCESSHuman access to surface water resources in the Northern Great Plains (NGP) is challenged by availability and quality, and ecosystem health objectives for these characteristics have not been well developed. Here, we present a predictive multivariate model using the reference condition approach to inform goals for ecosystem health assessment. Benthic communities and abiotic variables were collected at 280 potential reference sites and 8 test sites, and of these, reference sites with least amount of human activity (n = 83) were classified into three community groups and summary metrics. Discriminant function analysis and cross-validation determined that stream order and ecoregion predicted 68.7% of the sites correctly, thus enabling comparison of sites with unknown condition to reference site groups. We then evaluated metrics through Test Site Analysis and stressor gradient analysis in each biological group. Beetle and amphipod fauna were found to be important for condition assessment in addition to traditional metrics of species richness, abundance, detritivory, Ephemeroptera/Plecoptera/Trichoptera dominance, and assemblage composition. These results provide least disturbed reference condition and ecological insights into land use impacts in the NGP. Ultimately, this model is an effective tool for evaluating biotic condition, enables prioritizing river management strategies, and can quantify the efficacy of mitigation measures.
- OPEN ACCESSClimate change affects virtually all marine life and is increasingly a dominant concern for fisheries, reinforcing the need to incorporate climate variability and change when managing fish stocks. Canada is expected to experience widespread climate-driven impacts on its fisheries but does not yet have a clear adaptation strategy. Here, we provide an overview of a project we are developing, the Climate Adaptation Framework for Fisheries, to address this need and support climate adaptation in Canadian marine fisheries. The framework seeks to quantitatively and flexibly evaluate species, fishing infrastructure, and the management and operation of fisheries to assess climate vulnerability comprehensively and provide outputs that can support climate adaptation planning across different sectors, agencies, and stakeholders. This new framework should allow future climate scenarios to be evaluated and identify actionable climate vulnerabilities related to the management of fisheries, creating a systematic approach to supporting climate adaptation in Canada’s fisheries.
- OPEN ACCESS
- Jessie S. Reynolds,
- Chris K. Elvidge,
- Ian J. Vander Meulen,
- Caleb T. Hasler,
- Richard A. Frank,
- John V. Headley,
- L. Mark Hewitt, and
- Diane M. Orihel
We evaluated whether naphthenic acid fraction compounds (NAFCs) extracted from oil sand tailings adversely affect fish survival and behaviour. Following a before–after-control-impact design, we housed wild-caught juvenile yellow perch (Perca flavescens) in outdoor mesocosms to assess survival and behaviour under baseline conditions, then exposed fish to one of three treatments: negative control, 2 mg/L NAFC, or 15 mg/L NAFC. We performed behavioural assays (no-stimulus activity, food stimulus, and predator stimulus using a model bird) and assessed a comprehensive suite of endpoints (equilibrium losses, activity, shoaling, burst swimming, freezing, and space use). We found that exposure to 15 mg/L NAFCs substantially reduced fish survival and impaired fish equilibrium in all three behavioural tests. Furthermore, exposure to NAFCs impaired anti-predator behaviour: while the activity of control fish increased by two-fold in response to a predator stimulus, fish exposed to 2 or 15 mg/L NAFC did not change their activity levels after stimulation. No significant changes were observed in other behavioural endpoints. Overall, our findings suggest that a week-long exposure to NAFCs at concentrations commonly found in tailings ponds, constructed wetlands, and other mining-impacted waters may affect multiple facets of fish behaviour that could ultimately lead to reduced fitness in fish populations. - OPEN ACCESSMarine Protected Areas (MPAs) are conservation tools that promote biodiversity by regulating human impacts. However, because MPAs are fixed in space and, by design, difficult to change, climate change may challenge their long-term effectiveness. It is therefore imperative to consider anticipated ecological changes in their design. We predict the time of emergence (ToE: year when temperatures will exceed a species’ tolerance) of 30 fish and invertebrate species in the Scotian Shelf-Bay of Fundy draft network of conservation areas based on climate projections under two contrasting emission scenarios (RCP 2.6 and RCP 8.5). We demonstrate a strong Southwest-to-Northeast gradient of change under both scenarios. Cold water-associated species had earlier ToEs, particularly in southwesterly areas. Under low emissions, 20.0% of habitat and 12.6% of species emerged from the network as a whole by 2100. Under high emissions, 51% of habitat and 42% of species emerged. These impacts are expected within the next 30–50 years in some southwestern areas. The magnitude and velocity of change will be tempered by reduced emissions. Our identification of high- and low-risk areas for species of direct and indirect conservation interest can support decisions regarding site and network design (and designation scheduling), promoting climate resilience.
- OPEN ACCESS
- Travis G. Gerwing,
- Lily Campbell,
- Diana J. Hamilton,
- Myriam A. Barbeau,
- Gregory S. Norris,
- Sarah E. Dudas, and
- Francis Juanes
While trophic and habitat-related abiotic variables (predation, competition, tolerance, etc.) are known to influence community structure in many ecosystems, some systems appear to be only minimally influenced by these variables. Sampling multiple tidal flat communities in northern BC, Canada, we investigated the relative importance of top-down and middle-out (mesopredators) variables, competition for resources (bottom up), and abiotic variables in structuring an infaunal community (invertebrates living in sediment). Similar to previous studies on mudflats in the Bay of Fundy (also at a north temperate latitude), we determined that these variables accounted for a minor (0%–9%) proportion of the observed variation in this infaunal community, suggesting that these variables play a small role in structuring this community. Based on the results of our study and in combination with previous experiments on infaunal recovery patterns post disturbance, we posit that the main factors influencing these infaunal communities likely operate at a scale of sites (kilometres) and(or) plot (metres or less) but not transects (10–100 m within site). Candidate forces structuring these intertidal communities that need future examination include regional species pools and the variables that affect these pools, sediment biogeochemistry, and disturbance/recovery history of a site. The similarity of our Pacific coast findings to those from the north temperate Atlantic coast suggests some similarity in the processes structuring these distinct infaunal communities. - OPEN ACCESSBenthic macroinvertebrate communities, which include unionid freshwater mussels, enhance the health of river ecosystems. Human impacts have driven declines within freshwater mussel communities and due to their complex life cycles, mussel recovery efforts are complex. In Canada, conservation of imperiled species has focused on biodiversity hotspots such as the Sydenham River in the Laurentian Great Lakes Basin. In practice, species conservation and habitat monitoring are siloed between federal agencies and local conservation authorities, limiting the potential for alignment of conservation policy and practice. Here we bring together federal, local, and our own survey data to explore patterns of co-occurrences between mussel species and other macroinvertebrate taxa to explore the extent to which knowledge of one benthic community informs the other. Mussel communities (species richness, community composition) differed between sites where imperiled mussel species were present and/or absent. Benthic macroinvertebrate metrics (e.g., family richness, percent Ephemeroptera, Plecoptera, and Trichoptera taxa) and specific indicator taxa were correlated with mussel species richness and the presence of imperiled mussel species. We show that benthic macroinvertebrate diversity indicators provided insight into imperiled species occurrences that warrant further investigation. These findings underscore support for coordinated watershed monitoring efforts and could be crucial for more successful freshwater mussel conservation.
- OPEN ACCESSThe creation and deployment of plastic structures made out of pipes and panels in freshwater ecosystems to enhance fish habitat or restore freshwater systems have become popularized in some regions. Here, we outline concerns with these activities, examine the associated evidence base for using plastic materials for restoration, and provide some suggestions for a path forward. The evidence base supporting the use of plastic structures in freshwater systems is limited in terms of ecological benefit and assurances that the use of plastics does not contribute to pollution via plastic degradation or leaching. Rarely was a cradle-to-grave approach (i.e. the full life cycle of restoration as well as the full suite of environmental consequences arising from plastic creation to disposal) considered nor were decommissioning plans required for deployment of plastic habitats. We suggest that there is a need to embrace natural materials when engaging in habitat restoration and provide more opportunities for relevant actors to have a voice regarding the types of materials used. It is clear that restoration of freshwater ecosystems is critically important, but those efforts need to be guided by science and not result in potential long-term harm. We conclude that based on the current evidence base, the use of plastic for habitat enhancement or restoration in freshwater systems is nothing short of littering.
- OPEN ACCESS
- P.J. Duke,
- B. Richaud,
- R. Arruda,
- J. Länger,
- K. Schuler,
- P. Gooya,
- M.M.M. Ahmed,
- M.R. Miller,
- C.A. Braybrook,
- K. Kam,
- R. Piunno,
- Y. Sezginer,
- G. Nickoloff, and
- A.C. Franco
Improving our understanding of how the ocean absorbs carbon dioxide is critical to climate change mitigation efforts. We, a group of early career ocean professionals working in Canada, summarize current research and identify steps forward to improve our understanding of the marine carbon sink in Canadian national and offshore waters. We have compiled an extensive collection of reported surface ocean air–sea carbon dioxide exchange values within each of Canada's three adjacent ocean basins. We review the current understanding of air–sea carbon fluxes and identify major challenges limiting our understanding in the Pacific, the Arctic, and the Atlantic Ocean. We focus on ways of reducing uncertainty to inform Canada's carbon stocktake, establish baselines for marine carbon dioxide removal projects, and support efforts to mitigate and adapt to ocean acidification. Future directions recommended by this group include investing in maturing and building capacity in the use of marine carbon sensors, improving ocean biogeochemical models fit-for-purpose in regional and ocean carbon dioxide removal applications, creating transparent and robust monitoring, verification, and reporting protocols for marine carbon dioxide removal, tailoring community-specific approaches to co-generate knowledge with First Nations, and advancing training opportunities for early career ocean professionals in marine carbon science and technology. - OPEN ACCESS
- Tyler D. Eddy,
- Daniel Duplisea,
- Matthew D. Robertson,
- Raquel Ruiz-Díaz,
- C. Abraham Solberg, and
- Fan Zhang
Fish populations are dynamic; their productivity depends on the environment, predator and prey interactions, and fisheries harvest rates. Failure to account for these factors in fisheries science and management can lead to a misestimation of stock dynamics and productivity, resulting in overexploitation or forgone fisheries yield. Using an online survey, we asked fisheries scientists, industry stakeholders, Indigenous partners, and non-governmental organizations whether changing ecosystem productivity was a problem in their experience, how often dynamic approaches to fisheries reference points have been adopted, what methods had been used, and what fisheries they had been applied to. Changing fisheries or ecosystem productivity was reported as an issue by 96% of respondents; however, 74% of respondents said they had never seen dynamic reference points implemented, 16% said in very few instances, while 10% said frequently. The most common barriers to implementation of dynamic approaches in fisheries management were institutional inertia and uncertainty about whether a change in productivity was lasting. We discuss trade-offs between fisheries management performance and stability. - OPEN ACCESSPiscine orthoreovirus genotype 1 (PRV-1) is a common virus in farmed and wild salmon in the northeastern Pacific Ocean. Its regional occurrence in freshwater is far less clear. From 2019 to 2021, tissues of 5619 juvenile anadromous salmon (primarily Atlantic, Chinook, and coho) sampled from 12 commercial and 27 enhancement British Columbia hatcheries during 83 sampling events were screened for PRV-1 prior to seawater entry. More than 2200 (∼40%) were also screened using a Pan-PRV assay targeting all known PRV genotypes. PRV-1 was detected in four coho salmon at two freshwater enhancement facilities and in one Chinook salmon at a commercial facility. Partial (S1 segment) genome sequencing identified detections to be of the PRV-1 subgenotype endemic to the northeastern Pacific. PRV-1 was not detected (5611 individuals; 99.9%) or test results were inconclusive (3 individuals; 0.05%) for all remaining samples screened for PRV-1. PRV-2 and PRV-3 were not detected using the Pan-PRV assay. It is concluded that commercial and enhancement freshwater hatcheries of British Columbia contribute minimally to the prevalence and persistence of PRV-1 in anadromous salmon of the northeastern Pacific, and these hatcheries appear not to have contracted or participated in the distribution of nonendemic forms of PRV in recent years.
- OPEN ACCESSThe impact of the southern Gulf of St. Lawrence American lobster (Homarus americanus) fishery on species bycatch is currently unknown. The composition of the incidental catch, both nonharvestable lobster (by fisheries regulations) and nonlobster species, was systematically collected over the 2015 spring and summer fishing seasons. A total of 51 948 (7147 were nonlobster taxa) individual organisms weighing 13 987.60 kg (1223.91 kg of nonlobster taxa) were captured as bycatch during 73 fishing trips. By weight per trip, the most common lobster bycatch were undersized male and females, and the highest nonlobster species catch were Atlantic rock crab (Cancer irroratus). A semiquantitative assessment of injury and vitality was applied to bycatch as a proxy for discard mortality. The majority of the individuals assessed for visible injury were deemed uninjured (98% both fish and invertebrates); however, postrelease mortality was not measured. A smaller study in 2019 corroborated the 2015 catches and supported current assumptions that the passive gear type, the low diversity of bycatch, and the rapid hand-sorting of the trap minimize the impact of the lobster fishery on incidentally captured taxa. Further scientific monitoring is recommended to better account for all sources of mortality in stock assessments and rebuilding plans.