Applied Filters
- Article
- MicrobiologyRemove filter
- Open AccessRemove filter
Journal Title
Topics
Publication Date
Author
- Ariel, Ellen2
- Wirth, Wytamma2
- Wong, Alex2
- Alves da Costa Ribeiro Quintans, Isadora Louise1
- Alves da Costa Ribeiro Souza, Juliana1
- Balasubramaniam, Thiropa1
- Bass, Arthur L1
- Bateman, Andrew W1
- Blais, Burton W1
- Bui-Marinos, Maxwell P1
- Calvaruso, Rossella1
- Carrillo, Catherine D1
- Carter, Cassandra1
- Connors, Brendan M1
- Cooper, Ashley L1
- Deyholos, Michael K1
- Doukhanine, Evgueni1
- Freeman, Claire N1
- Guncay, Ashley1
- Hawkes, Kristen1
- Hinch, Scott G1
- Hinz, Aaron1
- Hug, Laura A1
- Jamieson, Rob C1
- Kassen, Rees1
Access Type
1 - 11of11
Save this search
Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Filters
You do not have any saved searches
- OPEN ACCESSIn some species where males make no direct contribution to a female’s lifetime reproductive success, females choose mates based on the indirect benefits manifested in their offspring. One trait that may be subject to this sexual selection is immunocompetence (the ability to mount an immune response following exposure to pathogens); however, the results of previous work on its link to male attractiveness have been ambiguous. Herein we examine the life history consequences of mating with males with a history of failure or success in reproductive competitions in Drosophila melanogaster. By examining egg-to-adult survival, body weights, and bacterial loads of offspring reared in either the absence or presence of a bacterial pathogen, we were able to examine whether sire reproductive success was associated with their offsprings’ ability to respond to an immunological challenge and other life history traits. Our results are partially consistent with the predictions of the “immunocompetence handicap hypothesis”: competitively successful males (“studs”) sire male offspring that are better able to handle an immunological challenge than those sired by competitively unsuccessful males (“duds”). However, our assay also revealed the opposite pattern in female offspring, suggestive of the complicating presence of alleles with sexually antagonistic effects on the expression of this important life history trait.
- OPEN ACCESS
- Claire N. Freeman,
- Lena Scriver,
- Kara D. Neudorf,
- Lisbeth Truelstrup Hansen,
- Rob C. Jamieson, and
- Christopher K. Yost
Wastewater treatment plants (WWTPs) have been identified as hotspots for antimicrobial resistance genes (ARGs) and thus represent a critical point where patterns in ARG abundances can be monitored prior to their release into the environment. The aim of the current study was to measure the impact of the release of the final treated effluent (FE) on the abundance of ARGs in the receiving water of a recently upgraded WWTP in the Canadian prairies. Sample nutrient content (phosphorous and nitrogen species) was measured as a proxy for WWTP functional performance, and quantitative PCR (qPCR) was used to measure the abundance of eight ARGs, the intI1 gene associated with class I integrons, and the 16S rRNA gene. The genes ermB, sul1, intI1, blaCTX-M, qnrS, and tetO all had higher abundances downstream of the WWTP, consistent with the genes with highest abundance in the FE. These findings are consistent with the increasing evidence suggesting that human activity affects the abundances of ARGs in the environment. Although the degree of risk associated with releasing ARGs into the environment is still unclear, understanding the environmental dimension of this threat will help develop informed management policies to reduce the spread of antibiotic resistance and protect public health. - OPEN ACCESSFish, amphibians, and reptiles exhibit temperature-dependent ranaviral disease. We performed an experimental infection at four different environmental temperatures (16, 22, 28, and 34 °C) to investigate the effect of temperature on ranaviral infection in Krefft’s turtle (Emydura macquarii krefftii). Infection rates and viral loads were determined by quantitative polymerase chain reaction to detect ranaviral DNA in liver samples at 21 d postexposure. The rate of infection differed across the temperature treatment groups. Infection rates were 44%, 90%, 60%, and 10% for the 16, 22, 28, and 34 °C temperature groups, respectively. Highest viral load was observed in the 28 °C temperature group, and there was a statistically significant difference in viral load between the 16 and 28 °C temperature groups (p = 0.027). Based on the results of this study, the temperature of maximal infection rate for ranaviral infection in Krefft’s river turtles is estimated to be 23.2 °C (SD = 4.5). The findings of this study can inform management decisions in terms of disease control and treatment and form a platform for modelling disease outbreaks.
- OPEN ACCESSRanaviruses are large nucleocytoplasmic DNA viruses that infect ectothermic vertebrates. Here we report the results of a scientometric analysis of the field of ranavirology for the last 10 years. Using bibliometric tools we analyse trends, identify top publications and journals, and visualise the ranavirus collaboration landscape. The Web of Science core collection contains 545 ranavirus-related publications from 2010 to 2019, with more publications produced every year and a total of 6830 citations. Research output is primarily driven by the United States and People’s Republic of China, who together account for more than 60% of ranavirus publications. We also observed a positive correlation between the average number of co-authors on ranavirus publications and the year of publication, indicating that overall collaboration is increasing. A keyword analysis of ranavirus publications from 2010 to 2019 reveals several areas of research interest including; ecology, immunology, virology/molecular biology, genetics, ichthyology, and herpetology. While ranavirus research is conducted globally, relatively few publications have co-authors from both European and Asian countries, possibly because closer countries (geographical distance) are more likely to share co-authors. To this end, efforts should be made to foster collaborations across geopolitical and cultural boundaries, especially between countries with shared research interests as ultimately, understanding global pathogens, like ranaviruses, will require global collaboration.
- OPEN ACCESS
- Ashley L. Cooper,
- Cassandra Carter,
- Hana McLeod,
- Marie Wright,
- Prithika Sritharan,
- Sandeep Tamber,
- Alex Wong,
- Catherine D. Carrillo, and
- Burton W. Blais
Bacterial carbapenem resistance is a major public health concern since these antimicrobials are often the last resort to treat serious human infections. To evaluate methodologies for detection of carbapenem resistance, carbapenem-tolerant bacteria were isolated from wastewater treatment plants in Toronto, Ottawa, and Arnprior, Ontario. A total of 135 carbapenem-tolerant bacteria were recovered. Polymerase chain reaction (PCR) indicated the presence of carbapenem hydrolysing enzymes KPC (n = 10), GES (n = 5), VIM (n = 7), and IMP (n = 1), and β-lactamases TEM (n = 7), PER (n = 1), and OXA-variants (n = 16). A subset of 46 isolates were sequenced and analysed using ResFinder and CARD-RGI. Both programs detected carbapenem resistance genes in 35 sequenced isolates and antimicrobial resistance genes (ARGs) conferring resistance to multiple class of other antibiotics. Where β-lactamase resistance genes were not initially identified, lowering the thresholds for ARG detection enabled identification of closely related β-lactamases. However, no known carbapenem resistance genes were found in seven sequenced Pseudomonas spp. isolates. Also of note was a multi-drug-resistant Klebsiella pneumoniae isolate from Ottawa, which harboured resistance to seven antimicrobial classes including β-lactams. These results highlight the diversity of genes encoding carbapenem resistance in Ontario and the utility of whole genome sequencing over PCR for ARG detection where resistance may result from an assortment of genes. - OPEN ACCESSPost-transcriptional regulators such as microRNAs are emerging as conserved regulators of innate antiviral immunity in vertebrates, yet their roles in amphibian antiviral responses remain uncharacterized. We profiled changes in microRNA expressions in the Xenopus laevis skin epithelial-like cell line Xela DS2 in response to poly(I:C)—an analogue of viral double-stranded RNA and inducer of type I interferons—or frog virus 3 (FV3), an immunoevasive virus associated with amphibian mortality events. Small RNA libraries generated from untreated, poly(I:C)-treated, and FV3-infected cells were sequenced. We detected 136 known X. laevis microRNAs and discovered 133 novel X. laevis microRNAs. Sixty-five microRNAs were differentially expressed in response to poly(I:C), many of which were predicted to target regulators of antiviral pathways such as cGAS-STING, RIG-I/MDA-5, TLR signaling, and type I interferon signaling, as well as products of these pathways (NF-ĸB-induced and interferon-stimulated genes). In contrast, only 49 microRNAs were altered by FV3 infection, fewer of which were predicted to interact with antiviral pathways. Interestingly, poly(I:C) treatment or FV3 infection downregulated transcripts encoding factors of the host microRNA biogenesis pathway. Our study is the first to suggest that host microRNAs regulate innate antiviral immunity in frogs and sheds light on microRNA-mediated mechanisms of immunoevasion by FV3.
- OPEN ACCESS
- Arthur L. Bass,
- Andrew W. Bateman,
- Brendan M. Connors,
- Benjamin A. Staton,
- Eric B. Rondeau,
- Gideon J. Mordecai,
- Amy K. Teffer,
- Karia H. Kaukinen,
- Shaorong Li,
- Amy M. Tabata,
- David A. Patterson,
- Scott G. Hinch, and
- Kristina M. Miller
Recent decades have seen an increased appreciation for the role infectious diseases can play in mass mortality events across a diversity of marine taxa. At the same time many Pacific salmon populations have declined in abundance as a result of reduced marine survival. However, few studies have explicitly considered the potential role pathogens could play in these declines. Using a multi-year dataset spanning 59 pathogen taxa in Chinook and Coho salmon sampled along the British Columbia coast, we carried out an exploratory analysis to quantify evidence for associations between pathogen prevalence and cohort survival and between pathogen load and body condition. While a variety of pathogens had moderate to strong negative correlations with body condition or survival for one host species in one season, we found that Tenacibaculum maritimum and Piscine orthoreovirus had consistently negative associations with body condition in both host species and seasons and were negatively associated with survival for Chinook salmon collected in the fall and winter. Our analyses, which offer the most comprehensive examination of associations between pathogen prevalence and Pacific salmon survival to date, suggest that pathogens in Pacific salmon warrant further attention, especially those whose distribution and abundance may be influenced by anthropogenic stressors. - OPEN ACCESSCyanobacterial blooms and their toxigenic potential threaten freshwater resources worldwide. In Atlantic Canada, despite an increase of cyanobacterial blooms in the last decade, little is known about the toxigenic potential and the taxonomic affiliation of bloom-forming cyanobacteria. In this study, we employed polymerase chain reaction (PCR) and metagenomic approaches to assess the potential for cyanotoxin and other bioactive metabolite production in Harvey Lake (oligotrophic) and Washademoak Lake (mesotrophic) in New Brunswick, Canada, during summer and early fall months. The PCR survey detected the potential for microcystin (hepatotoxin) and anatoxin-a (neurotoxin) production in both lakes, despite a cyanobacterial bloom only being visible in Washademoak. Genus-specific PCR associated microcystin production potential with the presence of Microcystis in both lakes. The metagenomic strategy provided insight into temporal variations in the microbial communities of both lakes. It also permitted the recovery of a near-complete Microcystis aeruginosa genome with the genetic complement to produce microcystin and other bioactive metabolites such as piricyclamide, micropeptin/cyanopeptolin, and aeruginosin. Our approaches demonstrate the potential for production of a diverse complement of bioactive compounds and establish important baseline data for future studies of understudied lakes, which are frequently affected by cyanobacterial blooms.
- OPEN ACCESS
SARS-CoV-2 detection from the built environment and wastewater and its use for hospital surveillance
- Aaron Hinz,
- Lydia Xing,
- Evgueni Doukhanine,
- Laura A. Hug,
- Rees Kassen,
- Banu Ormeci,
- Richard J. Kibbee,
- Alex Wong,
- Derek MacFadden, and
- Caroline Nott
Patients hospitalized with SARS-CoV-2 infections are major contributors to morbidity and mortality in health care settings. Our understanding of the distribution of this virus in the built health care environment and wastewater, and relationship to disease burden, is limited. We performed a prospective multi-center study of environmental sampling of SARS-CoV-2 from hospital surfaces and wastewater and evaluated their relationships with regional and hospital COVID-19 burden. We validated a qPCR-based approach to surface sampling and collected swab samples weekly from different locations and surfaces across two tertiary care hospital campuses for a 10-week period during the pandemic, along with wastewater samples. Over the 10-week period, 963 swab samples were collected and analyzed. We found 61 (6%) swabs positive for SARS-CoV-2, with the majority of these (n = 51) originating from floor samples. Wards that actively managed patients with COVID-19 had the highest frequency of positive samples. Detection frequency in built environment swabs was significantly associated with active cases in the hospital throughout the study. Wastewater viral signal changes appeared to predate change in case burden. Our results indicate that environment sampling for SARS-CoV-2, in particular from floors, may offer a unique and resolved approach to surveillance of COVID-19. - OPEN ACCESSCoastal salt marshes provide many ecosystem services; however, little is known of the biology of decomposer taxa in these systems. This study employed aboveground and belowground litterbags to characterize the fungal and mite communities associated with the dominant salt marsh grass, Sporobolus pumilus, in the Minas Basin, Nova Scotia. Decomposition rates of aboveground and belowground tissues and environmental variables were quantified to contextualize temporal patterns in community composition. Aboveground litterbag mass loss peaked in July and decreased consistently over succeeding months, which positively correlated with fungal richness. Fungal and mite richness displayed inverse relationships over time, with mites gradually increasing in diversity before peaking in November, suggesting the presence of a complex detrital network where mites and fungi respond to different and possibly unrelated environmental cues. This study offers a first look at temporal community dynamics of two neglected groups of decomposers associated with S. pumilus in Canada.
- OPEN ACCESS
- Isadora Louise Alves da Costa Ribeiro Quintans,
- Juliana Alves da Costa Ribeiro Souza, and
- Michael K Deyholos
Fusarium oxysporum f. sp. lini and Septoria linicola are causes of fusarium wilt and pasmo in flax (Linum usitatissimum). Members of a third fungal genus, Alternaria spp., have also been found in fiber and linseed varieties of flax, and are a source of post-harvest spoilage and mycotoxins in a wide range of crops. We performed a microdilution assay and calculated the median effective concentration (EC50) to compare the potency of cyclolinopeptides (CLPs), two polyamines (spermidine and spermine), and the fungicide carbendazimin in the control of three fungi that have potential pathogenic activity (F. oxysporum, S. linicola, and Alternaria spp), of which the first two are particulary significant causes of disease in flax. For carbendazim, all EC50 values were <0.6 μg/mL. The observed EC50 ranged from 111 to 340 μg/mL for a mixture of six unique CLPs, 109 to 778 μg/mL for spermine, and 21 to 272 μg/mL for spermidine. Spermidine was most effective against Alternaria sp., with an EC50 of 21 μg/mL. The results presented here showed that polyamines and CLPs possess limited antifungal activities against several fungi, with spermidines the most effective naturally occurring compound tested. Our findings do not support the hypothesis that CLPs act as potent antifungals against the three species of pathogens tested.