Applied Filters
- Anatomy and Physiology
Journal Title
Topics
Publication Date
Author
- Bashandy, Mohamed A2
- Fathy, Abdallah H2
- Mansour, Ahmed M2
- Arias, Edward B1
- Azab, Khaled S1
- Baker, Brent A1
- Bashandy, Samir A1
- Bashandy, Samir A E1
- Bergdahl, Andreas1
- Boukens, Bastiaan J1
- Cartee, Gregory D1
- Chattopadhyay, Sandip1
- Dash, Moumita1
- Dirkes, Rebecca K1
- Hinton, Pamela S1
- Jensen, Bjarke1
- Joyce, William1
- Jurrissen, Thomas J1
- Khan, Nazish Iqbal1
- Khatun, Shamima1
- Lubahn, Dennis B1
- Maity, Moulima1
- Mondragon, Pamela1
- Padilla, Jaume1
- Perveen, Hasina1
Access Type
1 - 11of11
Save this search
Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Filters
Search Name | Searched On |
---|---|
Subject Areas: Anatomy and Physiology (11) | 20 Jan 2025 |
You do not have any saved searches
- OPEN ACCESSThe cardiovagal baroreflex is an important physiological reflex that is commonly taught in health-related university physiology courses. This reflex is responsible for the rapid maintenance of blood pressure through dynamic changes in heart rate (HR) and vascular resistance. The use of lower-body negative pressure (LBNP) and lower-body positive pressure (LBPP) can manipulate these stretch sensitive baroreceptors. High performance and relatively inexpensive homemade LBNP and LBPP chambers can be easily constructed providing a valuable tool for both research and teaching purposes. There has been previous documentation of how to build a LBNP chamber; however, the information available usually lacks appropriate construction details, and there is currently no literature on how to build a chamber that can accommodate both LBNP and LBPP. In addition, a recently developed novel LBNP/LBPP chamber positioned on a 360° tilt-table provided the unique utility of superimposing both LBNP/LBPP and body position as independent or combined stressors to alter central blood volume. The primary purposes of this manuscript are to (1) provide step-by-step instructions on how to build a tilt-table LBNP/LBPP chamber, and (2) demonstrate the effectiveness of a tilt-table LBNP/LBPP chamber to facilitate undergraduate and graduate learning in the laboratory by effectively demonstrating the cardiovagal baroreflex.
- OPEN ACCESSElectronic cigarettes (ECs) are devices that are used recreationally or as smoking cessation tools, and have become increasingly popular in recent years. We conducted a review of the available literature to determine the health effects caused by the use of these devices. A heating element in the EC aerosolizes a solution of propylene glycol, glycerol, nicotine (optional), and flavouring (optional). These compounds are generally harmless on their own. However, upon heating, they produce various carcinogens and irritants. We found that concentrations of these toxicants vary significantly depending on the type of EC device, the type of EC liquid, and the smoking behaviour of the user. Exposure to these vapours can cause inflammation and oxidative damage to in vitro and in vivo cells. EC aerosol can also potentially affect organ systems and especially cardiovascular and lung function. We concluded that EC use causes acute effects on health but not as severe as those of conventional cigarettes (CCs). These devices could, therefore, be of use for smokers of CCs wishing to quit. However, as EC aerosol introduces new toxicants not found in CCs, long-term studies are needed to investigate possible chronic effects associated with EC use.
- OPEN ACCESSType 1 diabetes (T1DM) is known to cause an increase in reactive oxygen species (ROS) and elevated intracellular glucose levels. We investigated the metallothionein I and II (MT I+II) antioxidants expression in soleus (mainly slow-twitch) and plantaris (predominantly fast-twitch) skeletal muscle using a rodent model of streptozotocin-induced diabetes. The presence of oxidative stress was confirmed by the detection of increased levels of protein carbonyl formation in the diabetic tissues. DAB (3,3′-diaminobenzidine) immunostaining and Western blotting analyses demonstrated that MT I+II expression was significantly upregulated in the diabetic soleus and plantaris muscle tissues compared with their respective controls. Moreover, no significant difference was detected between the plantaris and soleus controls or between the plantaris and soleus diabetic tissues. These findings suggest that there is an increase in MT protein expression in the soleus and plantaris muscles associated with the induction of T1DM. A better understanding of the molecular mechanisms that allow MT to prevent the oxidative stress associated with diabetes could lead to a novel therapeutic strategy for this chronic disease and its associated complications.
- OPEN ACCESSDiethylnitrosamine (DEN) is a well-known carcinogen. The aim of our study was to determine the role of olive oil (7 g/kg) with fig (1 g/kg) (OF) and (or) date palm (1 g/kg) (D) fruit extracts during DEN treatment of male Wistar rats. The OF–DEN and (or) D–DEN groups were given oral antioxidants daily for two weeks before and during DEN treatment (21 weeks).The DEN-treated group showed dramatic results for all investigated parameters as compared with the control rats. All OF–DEN and D–DEN groups showed significant improvement in hepatic thiobarbituric acid reactive substances, reduced glutathione, and nitric oxide concentration in the liver tissue, in addition to improvement in serum vascular endothelial growth factor level, alpha-fetoprotein, lipid profile, lipid risk ratios, and the hematological parameters as compared with the DEN-treated group.In conclusion, the administration of OF and (or) D fruit extracts to DEN-treated rats resulted in a considerable improvement in the investigated biochemical and hematological parameters. In addition, the combined OFD treatments showed greater improvements revealing the synergistic effect of the combination.
- OPEN ACCESSThe goal of this study was to determine the possible beneficial effect of olive oil (7 g/kg) with fig (1 g/kg) and date palm fruit (1 g/kg) extracts (OFD) on the toxicity hazards of doxorubicin (DOX) and (or) γ-radiation. The DOX-treated groups received doses of 2.5 mg/kg body weight via intravenous (IV) injection weekly for four consecutive weeks. Rats in the irradiated groups were exposed to whole-body γ-radiation with fractioned doses of 2 Gy weekly for four consecutive weeks. The OFD-treated groups received two weeks of pretreatment with OFD and daily supplementation via oral gavage during the experimental period. The DOX-treated and (or) irradiated groups showed decreases in the antioxidant parameters (reduced glutathione and nitric oxide) as well as increased lipid peroxidation products. In addition, we observed changes in the lipid profile parameters, lipid risk ratios, and hematological values (erythrocyte (RBC) count, hemoglobin (Hb) concentration, hematocrit (Hct) percentage, platelet count, and total and differential leukocyte (WBC) count) in these groups compared with the control rats. The administration of OFD to DOX-treated and (or) irradiated rats significantly ameliorated the oxidative stress markers, lipid profile, risk ratios, and hematological parameters. In conclusion, OFD could be used synergistically to decrease the negative side effects of chemotherapy and radiotherapy.
- OPEN ACCESSNovel, non-invasive, painless oral therapeutic agents are needed to replace the painful conventional treatment of arsenic-associated health hazards with metal chelators. Our aim was to examine the effect of spirulina (Spirulina platensis (Geitler, 1925)) on arsenic-mediated uterine toxicity. Female Wistar rats were divided equally into four experimental treatment groups: control group, sodium arsenite group (1.0 mg/100 g body mass), spirulina placebo group (20 mg/100 g body mass), and sodium arsenite + spirulina group. In contrast with the control group, spectrophotometric and electrozymographic evaluation revealed that rats that ingested arsenic for 8 d showed significant diminution of the activities of superoxide dismutase, catalase, and peroxidase (p < 0.001). Mutagenic uterine DNA breakage and tissue damage were prominent following arsenic consumption by the rats. Oral delivery of spirulina resulted in a significant amelioration of arsenic-induced adverse oxidative stress and genotoxic state of rats. A significant low-signaling (p < 0.001) of gonadotropins and estradiol was also noted in the arsenic-treated rats, which was terminated by spirulina; this arsenic-primed adverse effect was significant (p < 0.05, p < 0.01). The spirulina treatment mechanism could be associated with augmentation of the antioxidant defense system that protects the arsenic-mediated pathological state of the uterus.
- OPEN ACCESSThe present study investigated the in vivo neuroprotective role of Panax ginseng extract (PGE) pretreatment against transient cerebral ischemia in a middle cerebral artery occlusion (MCAO) model. Rats were randomly divided as follows: group I, control; group II, sham-operated; group III, where animals were subjected to MCAO surgery; and group IV, where animals were orally administered 10 mL PGE per day (200 mg/kg of body weight per day) for 30 d followed by MCAO induction at day 31. Following 24 h of reperfusion, blood and tissue (brain, liver, and kidney) samples were collected for biochemical and histopathological examination. Biochemical testing included lipid profile, liver enzymes, kidney function tests, C-reactive protein (CRP), lactate dehydrogenase (LDH), glucose, and total protein estimation. Tissue antioxidants (catalase, superoxide dismutase, and glutathione) were assessed in brain, liver, and kidney tissues. MCAO-induced histopathological changes were also examined in the tissues. Pretreatment with PGE showed significant improvement in tissue antioxidant status in brain, liver and kidney tissues. PGE treatment maintains plasma lipid profile, liver enzymes, kidney function, and CRP, LDH, and glucose levels. Histologically, monocytes and macrophage infiltration were observed in the tissues of MCAO animals, whereas PGE treatment preserved tissue architecture and minimal monocyte infiltration. PGE supplementation showed a neuroprotective effect against ischemia–reperfusion injury by effectively increasing endogenous antioxidant enzyme activity.
- OPEN ACCESS
- Rebecca K. Dirkes,
- Nathan C. Winn,
- Thomas J. Jurrissen,
- Dennis B. Lubahn,
- Victoria J. Vieira-Potter,
- Jaume Padilla, and
- Pamela S. Hinton
Estrogen receptor-α knockout (ERKO) in female rodents results in bone loss associated with increased osteocyte sclerostin expression; whether this also occurs in males is unknown. Here, we examined the effects of ERKO on femoral cortical geometry, trabecular microarchitecture, and osteocyte sclerostin expression of the femur and lumbar vertebrae. At 14 months of age, male ERKO and wild-type (WT) littermates (n = 6 per group) were sacrificed, and femora and vertebra were collected. Cortical geometry and trabecular microarchitecture were assessed via micro-computed tomography; osteocyte sclerostin expression was assessed via immunohistochemistry. ANCOVA with body weight was used to compare ERKO and WT for cortical geometry; t-tests were used for all other outcomes. Regardless of skeletal site, ERKO mice had greater trabecular bone volume and trabecular number and decreased trabecular separation compared with WT. In the femoral diaphysis, ERKO had lower total area, cortical area, and cortical thickness compared with WT. The percentage of sclerostin+ osteocytes was increased in ERKO animals in cortical bone but not in cancellous bone of the femur or the lumbar vertebrae. In conclusion, ERKO improved trabecular microarchitecture in aged male mice, but negatively altered femoral cortical geometry associated with a trend towards increased cortical sclerostin expression. - OPEN ACCESSEfficacy of high-intensity resistance exercise becomes progressively compromised with aging. Previously, to investigate this, we developed a rodent model of high-intensity training consisting of stretch-shortening contractions (SSCs) and determined that following one month of training, young rats exhibit a robust stress response and 20% performance increase, whereas old rats display a muted stress response and 30% performance decrease. Whether these age-specific responses occur early in training and constitute primary factors in adaptation/maladaptation was not addressed. The aim of the present study was to characterize performance, remodeling, and stress response transcriptional profile 6–120 h following acute SSC exposure. For young rats, the stress response pathway was highly regulated (≥20 differentially expressed genes at each time point) and was accompanied by robust DNA demethylation, tissue remodeling, and isometric torque recovery. For old rats, a muted transcriptional profile (13 and 2 differentially expressed genes at 6 and 120 h, respectively) coincided with deficiencies in demethylation, muscle remodeling, and torque recovery. These findings occurred in the context of heightened chronic levels of stress response gene expression with aging. This demonstrates that age-related constitutive elevations in stress response gene expression was accompanied by diminished SSC-induced responsiveness in epigenomic regulation and tissue remodeling.
- OPEN ACCESSThe role of α1-adrenergic receptors (α-ARs) in the regulation of myocardial function is less well-understood than that of β-ARs. Previous reports in the mouse heart have described that α1-adrenergic stimulation shortens action potential duration in isolated cells or tissues, in contrast to prolongation of the action potential reported in most other mammalian hearts. It has since become appreciated, however, that the mouse heart exhibits marked variation in inotropic response to α1-adrenergic stimulation between ventricles and even individual cardiomyocytes. We investigated the effects of α1-adrenergic stimulation on action potential duration at 80% of repolarization in the right and left ventricles of Langendorff-perfused mouse hearts using optical mapping. In hearts under β-adrenergic blockade (propranolol), phenylephrine or noradrenaline perfusion both increased action potential duration in both ventricles. The increased action potential duration was partially reversed by subsequent perfusion with the α-adrenergic antagonist phentolamine (1 μmol L−1). These data show that α1-receptor stimulation may lead to a prolonging of action potential in the mouse heart and thereby refine our understanding of how action potential duration adjusts during sympathetic stimulation.
- OPEN ACCESSAttenuated skeletal muscle glucose uptake (GU) has been observed with advancing age. It is important to elucidate the mechanisms linked to interventions that oppose this detrimental outcome. Earlier research using young rodents and (or) cultured myocytes reported that treatment with 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR; an AMP-activated protein kinase (AMPK) activator) can increase γ3-AMPK activity and reduce membrane cholesterol content, each of which has been proposed to elevate GU. However, the effect of AICAR treatment on γ3-AMPK activity and membrane cholesterol in skeletal muscle of aged animals has not been reported. Our purpose was to evaluate the effects of AICAR treatment on these potential mechanisms for enhanced glucose uptake in the skeletal muscle of aged animals. Epitrochlearis muscles from 26–27-month-old male rats were isolated and incubated ± AICAR, followed by 3 h incubation without AICAR, and then incubation with 3-O-methyl-[3 H] glucose (to assess GU ± insulin). Muscles were also analyzed for γ3-AMPK activity and membrane cholesterol content. Prior AICAR treatment led to increased γ3-AMPK activity, reduced membrane cholesterol content, and enhanced glucose uptake in skeletal muscle from aged rats. These observations revealed that two potential mechanisms for greater GU previously observed in younger animals and (or) cell models are also potentially relevant for enhanced GU by muscles from older animals.