Applied Filters
- Conservation and Sustainability
Journal Title
Topics
- Integrative Sciences167
- Science and Policy53
- Earth and Environmental Sciences35
- Biological and Life Sciences31
- Marine and Aquatic Sciences29
- Ecology and Evolution28
- Science and Society28
- Geosciences6
- Science Communication5
- Ethics2
- Plant and Agricultural Sciences2
- Science Education2
- Chemistry1
- Data Science Theory and Methods1
- Physical Sciences1
- Public Health1
- Zoology1
Publication Date
Author
- Cooke, Steven J17
- Bennett, Joseph R8
- Lemieux, Christopher J6
- Lotze, Heike K6
- Olive, Andrea6
- Jacob, Aerin L5
- Loring, Philip A5
- Ban, Natalie C4
- Beazley, Karen F4
- Favaro, Brett4
- Swerdfager, Trevor4
- Avery-Gomm, Stephanie3
- Boyce, Daniel G3
- Bueddefeld, Jill3
- Carruthers den Hoed, Don3
- Cheung, William W L3
- Colla, Sheila R3
- Davy, Christina M3
- Ford, Adam T3
- Gould, A Joyce3
- Halpenny, Elizabeth A3
- He, Mu3
- Hvenegaard, Glen T3
- Joubert, Brian3
- Kraus, Daniel3
Access Type
121 - 140of167
Save this search
Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Filters
Search Name | Searched On |
---|---|
Subject Areas: Conservation and Sustainability (167) | 3 Dec 2024 |
You do not have any saved searches
- OPEN ACCESSThis perspective essay examines the role of conservation law in contributing to biodiversity decline by exploring how current conservation laws exacerbate the challenges Canada faces. We contend that there are three intertwined foundation-setting functions of conservation law: they codify priorities and values, define and influence acceptable conservation behaviour, and drive the establishment of the institutions, programs, and governance arrangements of today’s conservation regime. We describe these functions and then assess whether conservation laws in Canada are adequately fulfilling the functions. We find that the federal conservation law regime is sub-optimal and likely incapable of halting and reversing the negative biodiversity trends. Based on this, we suggest a set of conservation legislative principles capable of catalyzing change and supporting the transition to a more sustainable conservation future.
- OPEN ACCESS
- Juliano Palacios-Abrantes,
- Sarah M. Roberts,
- Talya ten Brink,
- Tim Cashion,
- William W.L. Cheung,
- Anne Mook, and
- Tu Nguyen
The world has set ambitious goals to protect marine biodiversity and improve ocean health in the face of anthropogenic threats. Yet, the efficiency of spatial tools such as marine reserves to protect biodiversity is threatened as climate change shifts species distributions globally. Here, we investigate the ability of global marine reserves to protect fish biomass under future climate change scenarios. Moreover, we explore regional patterns and compare worlds with and without marine reserves. We rely on computer modeling to simulate an utopian world where all marine reserves thrive and ocean governance is effective. Results suggest that climate change will affect fish biomass in most marine reserves and their surrounding waters throughout the 21st century. The biomass change varies among regions, with tropical reserves losing biomass, temperate ones gaining, and polar reserves having mixed effects. Overall, a world with marine reserves will still be better off in terms of fish biomass than a world without marine reserves. Our study highlights the need to promote climate resilient conservation methods if we are to maintain and recover biodiversity in the ocean under a changing world. - OPEN ACCESS
- Alexandra M. Anderson,
- Catherine B. Jardine,
- J.R. Zimmerling,
- Erin F. Baerwald, and
- Christina M. Davy
Understanding the relationship between the height of wind turbines and wildlife fatalities is important for informing and mitigating wildlife collisions as ever taller and denser arrays of wind turbines are erected across the landscape. We examined relationships between turbine height and fatalities of bats and swallows at 811 turbines in Ontario, Canada, ranging from 119 to 186 m tall. We accounted for cut-in speeds, operational mitigation, and taller turbines projecting carcasses farther from the turbine base than shorter turbines. Fatalities of hoary bats (Lasiurus cinereus Palisot de Beauvois, 1796), silver-haired bats (Lasionycteris noctivagans Le Conte, 1831), and big brown bats (Eptesicus fuscus Palisot de Beauvois, 1796) increased with increased maximum blade height of turbines. In contrast, fatalities of little brown bat (Myotis lucifugus Le Conte, 1831) and eastern red bat (Lasiurus borealis Müller, 1776) decreased with increased turbine height. Fatalities of purple martins (Progne subis Linnaeus, 1758) and tree swallows (Tachycineta bicolor Vieillot, 1808) were higher at taller turbines than shorter turbines. However, fatalities of cliff swallow (Petrochelidon pyrrhonota Vieillot, 1817) and barn swallow (Hirundo rustica Linnaeus, 1758) were not associated with turbine height. Our results suggest that varying flight height among species may be one factor affecting collision risk. - OPEN ACCESS
- Nicolas Mansuy,
- Diana Staley,
- Sharlene Alook,
- Brenda Parlee,
- Alexandra Thomson,
- Danika Billie Littlechild,
- Matthew Munson, and
- Fred Didzena
Wilderness and national parks play a fundamental role in defining Canadian identity, yet Indigenous Peoples have historically been excluded from conservation decisions, resulting in systematic dispossession and oppression. In this article, we collaborate with Dene Tha'First Nation to discuss the recent paradigm shift towards Indigenous-led conservation and propose guiding principles to advance and assert the critical role of Indigenous Peoples in conservation. We begin with a brief history of Indigenous Peoples in conservation, followed by the concept of Indigenous protected and conserved areas (IPCAs). Our analyses show that IPCAs have gained momentum recently, driven by the Truth and Reconciliation Commission and Canada's commitment to global conservation goals. With one of the largest landmasses and Indigenous populations in the world, IPCAs in Canada have the potential to make immense contributions to environmental and cultural conservation rooted in an intrinsic relationship to the land. Despite this biocultural diversity, as of 2022, less than 1% of Canada's landmass is declared as Indigenous-led protected areas. However, more than 50 Indigenous communities across the country have currently received funding to establish IPCAs or to undertake early planning and engagement that could position Canada as a global leader in Indigenous-led conservation. As the Government of Canada aims to designate 25% of the territory as protected space by 2025 and 30% by 2030, embedding Indigenous rights, knowledge, and values in the national conservation strategy will be essential to simultaneously honoring the commitments to reconciliation and meeting the ambitious targets stipulated in the Kunming–Montreal Global Biodiversity Framework. - OPEN ACCESS
- Liette Vasseur,
- Bradley May,
- Meredith Caspell,
- Alex Marino,
- Pulkit Garg,
- Jocelyn Baker, and
- Samantha Gauthier
Communities in coastal areas of Canada, including the Great Lakes, face a number of challenges, including increased water level variability and extreme weather events, causing flooding and localized erosion. To effectively respond to these coastal risks requires structured, deliberative approaches with the aim of fostering resilience and contributing to sustainability. A collaborative engagement process was used to explore community challenges. This included a project launch, key informant interviews, meetings, focus groups (agriculture, tourism, youth), and on-line methods (shoreline residents). Participatory social network analysis and theory of change were used for overall sense-making. As a result, community members identified six impact pathways moving forward with climate action: partnerships and collaboration; strategic engagement; water and watersheds; ecosystem-based adaptation; shoreline protection; and education. These themes are consistent with current theory on sustainability and theory of change development. - OPEN ACCESSDinerstein et al. present a spatially explicit global framework for protected areas needed to reverse catastrophic biodiversity losses and stabilize climate. The Province of Ontario (Canada) stands out in this “Global Safety Net (GSN)” as a critical jurisdiction for meeting those goals, because of both the large extent of roadless lands and high carbon storage in terrestrial ecosystems. Simultaneously, pressure is increasing to develop unmanaged lands in Ontario, particularly in the Far North, for resource extraction. Here, we extract data from the GSN to identify and calculate the areal extent of target regions present in Ontario and critically review the results in terms of accuracy and implications for conservation. We show that when region-specific data are incorporated, Ontario is even more significant than what is shown in the GSN, especially in terms of carbon stocks in forested and open peatlands. Additionally, the biodiversity metrics used in the GSN only partially capture opportunities for conservation in Ontario, and the officially recognized extent of Indigenous lands vastly underestimates the role of First Nations in conservation. Despite these limitations, our analyses indicate that Ontario plays an outsized role in terms of its potential to impact the trajectories both of biodiversity and climate globally.
- OPEN ACCESS
- Rachael Cadman,
- Megan Dicker,
- Mary Denniston,
- Paul McCarney,
- Rodd Laing,
- Eric C.J. Oliver, and
- Megan Bailey
With Inuit organizations leading the way, there is a growing opportunity for meaningful partnerships between Inuit and visiting researchers to create impactful research programs and policy initiatives that reflect Inuit priorities. Collaborative research methods, where Inuit and visiting researchers work together to meet community needs, offer a potential avenue for braiding knowledge systems, and therefore have become an increasingly popular way to conduct research in the Arctic. In this paper, we outline our use of the data analysis method known as the “Framework Method” during the Imappivut Knowledge Study, a participatory mapping project led by the Nunatsiavut Government. We reflect on both the method's applicability and its usefulness for future research conducted in collaboration between Inuit and non-Inuit researchers. We find that the Framework Method allowed us to work in an iterative and adaptive manner, resulting in comprehensive findings for marine spatial planning. The method also supported data sovereignty for the Nunatsiavut Government. The Framework Method can be used to allow Nunatsiavut greater control over the data internally and self-determining access to external researchers. - OPEN ACCESSSeasonal variation in seagrass growth and senescence affects the provision of ecosystem services and restoration efforts, requiring seasonal monitoring. Remotely piloted aircraft systems (RPAS) enable frequent high-resolution surveys at full-meadow scales. However, the reproducibility of RPAS surveys is challenged by varying environmental conditions, which are common in temperate estuarine systems. We surveyed three eelgrass (Zostera marina) meadows in Newfoundland, Canada, using an RPAS equipped with a three-color band (red, green, blue [RGB]) camera, to evaluate the seasonal reproducibility of RPAS surveys and assess the effects of flight altitude (30–115 m) on classification accuracy. Habitat percent cover was estimated using supervised image classification and compared to corresponding estimates from snorkel quadrat surveys. Our results revealed inconsistent misclassification due to environmental variability and low spectral separability between habitats. This rendered differentiating between model misclassification versus actual changes in seagrass cover infeasible. Conflicting estimates in seagrass and macroalgae percent cover compared to snorkel estimates could not be corrected by decreasing the RPAS altitude. Instead, higher altitude surveys may be worth the trade-off of lower image resolution to avoid environmental conditions shifting mid-survey. We conclude that RPAS surveys using RGB imagery alone may be insufficient to discriminate seasonal changes in estuarine subtidal vegetated habitats.
- OPEN ACCESS
- Tim Alamenciak,
- Dorian Pomezanski,
- Nancy Shackelford,
- Stephen D. Murphy,
- Steven J. Cooke,
- Line Rochefort,
- Sonia Voicescu, and
- Eric Higgs
Much has been achieved by research into ecological restoration as a nature-based solution to the destruction of ecosystems, particularly in Canada. We conducted a national-level synthesis of Canadian restoration ecology research to understand strengths and gaps. This synthesis answers the following questions: Who is studying restoration? What ecosystem types are studied? Where is restoration studied? Which themes has restoration research focused on? Why is restoration happening? And how is restoration monitored and evaluated? We employed systematic searching for this review. Our results show that restoration research is conducted mainly by academics. Forest, peatland, grassland, and lake ecosystem types were the most commonly studied. There was a concentration of research in four provinces (Ontario, Quebec, Alberta, and British Columbia). Research into restoration has changed its thematic focus over time from reforestation to climate change. Legislation was the most common reason given for restoration. Restoration research frequently documented results of less than 5 years of monitoring and included one category of response variable (e.g., plant response but not animal response). Future research could investigate the outcomes of restoration prompted by legislation. At the dawn of the UN Decade on Ecosystem Restoration, this work demonstrates Canada's momentum and provides a model for synthesis in other countries. - OPEN ACCESSProtected areas (PAs) are a key component of most conservation strategies because they are thought to enhance biodiversity value relative to similar habitats in working landscapes. To examine whether PAs in Nova Scotia are functioning to enhance the biodiversity value of the landscapes in which they are embedded, we surveyed breeding bird communities in forested wetlands inside and outside of a large PA during 2018 and 2019. We found significantly higher species richness and diversity at sites in the working landscape relative to those inside the PA. Bird communities from different wetland types inside the PA were distinct from each other and those outside the PA, whereas bird communities at outside sites were homogenized and comprised of more early-successional species. There were numerous species of conservation concern at both inside and outside sites, indicating that both types of sites are playing important conservation roles. Abundances of these key species were driven by a combination of local (e.g., water table depth, herb, and shrub cover) and landscape scale factors (e.g., edge density and human disturbance). The higher abundance of long-distance migrants and insectivores at inside sites suggests PAs are providing critical additional support to key guilds that are in steep decline.
- OPEN ACCESSClimate change affects virtually all marine life and is increasingly a dominant concern for fisheries, reinforcing the need to incorporate climate variability and change when managing fish stocks. Canada is expected to experience widespread climate-driven impacts on its fisheries but does not yet have a clear adaptation strategy. Here, we provide an overview of a project we are developing, the Climate Adaptation Framework for Fisheries, to address this need and support climate adaptation in Canadian marine fisheries. The framework seeks to quantitatively and flexibly evaluate species, fishing infrastructure, and the management and operation of fisheries to assess climate vulnerability comprehensively and provide outputs that can support climate adaptation planning across different sectors, agencies, and stakeholders. This new framework should allow future climate scenarios to be evaluated and identify actionable climate vulnerabilities related to the management of fisheries, creating a systematic approach to supporting climate adaptation in Canada’s fisheries.
- OPEN ACCESSMarine Protected Areas (MPAs) are conservation tools that promote biodiversity by regulating human impacts. However, because MPAs are fixed in space and, by design, difficult to change, climate change may challenge their long-term effectiveness. It is therefore imperative to consider anticipated ecological changes in their design. We predict the time of emergence (ToE: year when temperatures will exceed a species’ tolerance) of 30 fish and invertebrate species in the Scotian Shelf-Bay of Fundy draft network of conservation areas based on climate projections under two contrasting emission scenarios (RCP 2.6 and RCP 8.5). We demonstrate a strong Southwest-to-Northeast gradient of change under both scenarios. Cold water-associated species had earlier ToEs, particularly in southwesterly areas. Under low emissions, 20.0% of habitat and 12.6% of species emerged from the network as a whole by 2100. Under high emissions, 51% of habitat and 42% of species emerged. These impacts are expected within the next 30–50 years in some southwestern areas. The magnitude and velocity of change will be tempered by reduced emissions. Our identification of high- and low-risk areas for species of direct and indirect conservation interest can support decisions regarding site and network design (and designation scheduling), promoting climate resilience.
- OPEN ACCESSWhile community-based monitoring (CBM) can support meaningful participation of the public in environmental decision-making, it remains unclear if and how CBM can support western science approaches to biophysical studies within cumulative effects assessment (CEA). We scored 40 Canadian CBM projects on their ability to enhance CEA's western science approaches to environmental monitoring. We used multivariate analyses to determine if the highest-scoring projects shared characteristics that could inform the design of CBMs to support CEA. Cluster analysis and non-metric multi-dimensional scaling ordination revealed that highest-scoring projects were distinct from lower scoring projects, and the Similarity Percentages Routine identified characteristics that differentiated these projects. The highest-scoring projects involved non-profit organizations as bridging organizations that coordinated community participation and received funding and in-kind support from provincial/territorial government agencies. Participants in these projects collected measurements and samples using standardized protocols described in training manuals. Their data were publicly accessible in georeferenced databases and were used for baseline studies and resource management. There are existing CBM projects in Canada that thus appear well positioned to enhance western science approaches to CEA. Further study is required to identify how CBM projects can be designed to braid Indigenous and western science approaches to mutually enhance CEA methods.
- OPEN ACCESSInvertebrate pollinators are in trouble: particularly documented are declines among bees and butterflies. Interacting stressors include pesticides, pathogens, habitat loss, nonnative species, and climate change. Many governments have strategies to reduce negative pressures on pollinators, but Canada does not despite widespread public interest in pollinator health. This study serves as a needs assessment for science-based policy solutions for wild pollinator conservation in Canada. We designed a Policy Delphi survey technique to identify solutions that experts deem both desirable and feasible. Our secondary aim was to identify research priorities that would inform the implementation of these solutions. Sixty % of the 83 unique solutions were supported and feasible at a high consensus level (10% were “strongly” supported and “definitely” feasible). General themes included improving the Canadian government's approach in assessing pesticide risk to pollinators, curbing pathogen spillover/spillback between managed and wild pollinators, and reducing the reliance of Canadian agricultural systems on pesticides, among others. We discuss solutions in reference to pollinator conservation policies recommended by the broader scientific community and identify policy levers within the context of Canada's highly decentralized approach to biodiversity conservation/management and a political economy that uses high numbers of managed, mostly nonnative bees for pollination services.
- OPEN ACCESSThe creation and deployment of plastic structures made out of pipes and panels in freshwater ecosystems to enhance fish habitat or restore freshwater systems have become popularized in some regions. Here, we outline concerns with these activities, examine the associated evidence base for using plastic materials for restoration, and provide some suggestions for a path forward. The evidence base supporting the use of plastic structures in freshwater systems is limited in terms of ecological benefit and assurances that the use of plastics does not contribute to pollution via plastic degradation or leaching. Rarely was a cradle-to-grave approach (i.e. the full life cycle of restoration as well as the full suite of environmental consequences arising from plastic creation to disposal) considered nor were decommissioning plans required for deployment of plastic habitats. We suggest that there is a need to embrace natural materials when engaging in habitat restoration and provide more opportunities for relevant actors to have a voice regarding the types of materials used. It is clear that restoration of freshwater ecosystems is critically important, but those efforts need to be guided by science and not result in potential long-term harm. We conclude that based on the current evidence base, the use of plastic for habitat enhancement or restoration in freshwater systems is nothing short of littering.
- OPEN ACCESSDespite some progress, successful co-management in Canada has remained the exception rather than the rule, and especially so in jurisdictions not covered by a comprehensive land claims agreement. As such, our aim in this perspective is to identify and describe some of the primary factors that may impede more rapid progress toward successful co-management and to explore why they persist, with particular attention to fisheries and marine contexts. Specifically, we outline several institutional conditions that are likely to impede broader adoption of co-management approaches in Canada, including (1) antiquated and incomplete legislative arrangements; (2) a co-management policy vacuum that has not grappled with emerging expectations for co-governance; (3) relative absence of the knowledge co-production systems needed to create the precursors for successful co-management initiatives; and (4) financial and human resource capacity limitations. Such conditions must also be situated in a dynamic context that includes the United Nations Declaration of the Rights of Indigenous Peoples, ongoing reconciliation processes, and shifts in the ownership and use of fisheries and other marine resources. We offer, finally, some suggestions to augment co-management efforts and ultimately achieve its promise.
- OPEN ACCESS
- Alexandra Langwieder,
- Angela Coxon,
- Natasha Louttit,
- Stephanie Varty,
- Felix Boulanger,
- Sanford Diamond,
- John Lameboy,
- Anderson Jolly,
- George Natawapineskum,
- Derek Okimaw, and
- Murray M. Humphries
Wildlife conservation is informed by detailed understanding of species demographics, habitat use, and interactions with environmental drivers. Challenges to collecting this information, particularly in remote places and on widely ranging species, can contribute to data deficiencies that detract from conservation status assessment and the effectiveness of management actions. Polar bears in James Bay face rapidly changing environmental conditions at the southern edge of their global range, but studying their ecology has been limited by community concerns about the methods typically used in polar bear research. Using a community-led and non-invasive approach, we deployed hair snare and camera trap sampling stations across 400 km of the Eeyou Marine Region in eastern James Bay. Stations collected >100 hair samples and thousands of photographs in one eight-week period that allowed for a novel investigation of this population’s distribution and body condition during the ice-free season. Polar bears were in average to above average body condition, and model selection of detections at stations revealed distance to mainland as a significant predictor of polar bear presence. Given its high potential, we suggest community-based monitoring using this method become a standard protocol to expand the scope and local leadership of polar bear research across the North. - OPEN ACCESSThe impact of the southern Gulf of St. Lawrence American lobster (Homarus americanus) fishery on species bycatch is currently unknown. The composition of the incidental catch, both nonharvestable lobster (by fisheries regulations) and nonlobster species, was systematically collected over the 2015 spring and summer fishing seasons. A total of 51 948 (7147 were nonlobster taxa) individual organisms weighing 13 987.60 kg (1223.91 kg of nonlobster taxa) were captured as bycatch during 73 fishing trips. By weight per trip, the most common lobster bycatch were undersized male and females, and the highest nonlobster species catch were Atlantic rock crab (Cancer irroratus). A semiquantitative assessment of injury and vitality was applied to bycatch as a proxy for discard mortality. The majority of the individuals assessed for visible injury were deemed uninjured (98% both fish and invertebrates); however, postrelease mortality was not measured. A smaller study in 2019 corroborated the 2015 catches and supported current assumptions that the passive gear type, the low diversity of bycatch, and the rapid hand-sorting of the trap minimize the impact of the lobster fishery on incidentally captured taxa. Further scientific monitoring is recommended to better account for all sources of mortality in stock assessments and rebuilding plans.
- OPEN ACCESSInvasive species are a leading cause of biodiversity loss and species extinctions across ecosystems on a global scale. The historical and ongoing focus on single-species management of invasive species and species at risk contributes to inefficiencies in management strategies that present an obstacle to achieving desired outcomes. A holistic approach that consolidates and maps linkages between the broader collective of invasive species and species at risk in an area provides a more appropriate entry point for issue-based, rather than species-based, management planning. We present a case study of this approach from British Columbia, Canada, which synthesized the identity, mechanisms of impact, mechanisms of spread, and magnitude of impacts across 782 unique pairs of invasive species and federally listed species at risk, based on a literature review of species at risk documentation. The resulting dataset was used to summarize the nature of interactions across species pairs and taxonomic groups to help guide the development of invasive species response strategies that make the best use of limited management resources. As species invasions and extinctions become increasingly interconnected, holistic approaches rooted in cumulative effects assessment and ecosystem-based management can provide a stronger foundation for reducing or mitigating this growing threat.
- OPEN ACCESSWith growing attention to the ethical and equity implications of Western-based approaches to research, the urgency of decolonizing research has emerged as a critical topic across academic disciplines, including the field of sustainability. The complexity and messiness of this endeavour, however, may translate into uncertainty among researchers about how and where to start. This is partly due to a lack of guidance, training, and accountability mechanisms through Western academic institutions. In this paper, we advance a three-step process that systematically guides critical reflection toward respectful engagement of local and Indigenous communities, as well as other marginalized groups, by drawing on the literature and on learnings from a recent graduate student-led initiative. The process we develop aims to provide a pragmatic starting point for decolonizing research and a counterpoint to conventional modes of research. Such a process will not only foster accountability, respect, and reciprocity but also movement toward locally relevant, context-appropriate, and action-oriented research outcomes. Our three-step process also challenges Western-based and extractive research practices and seeks to facilitate a shift in mindset about the purpose of research and how to approach it.