Applied Filters
- Ecology and Evolution
Journal Title
Topics
- Biological and Life Sciences146
- Integrative Sciences43
- Earth and Environmental Sciences36
- Conservation and Sustainability30
- Marine and Aquatic Sciences28
- Zoology24
- Genetics and Genomics11
- Geosciences7
- Plant and Agricultural Sciences7
- Biomedical and Health Sciences5
- Anatomy and Biomechanics4
- Epidemiology4
- Science Communication4
- Science and Society3
- Microbiology2
- Science and Policy2
- Science Education2
- Atmospheric and Climate Sciences1
- Cell and Developmental Biology1
- Ethics1
- Neuroscience1
- Public Health1
Publication Date
Author
- Hall, Britt D6
- Edwards, Sara4
- Davy, Christina M3
- Heard, Stephen B3
- Heustis, Allyson3
- Mallory, Mark L3
- Morris, Douglas W3
- Pureswaran, Deepa S3
- Addison, Jason A2
- Barry, Tegan N2
- Bates, Amanda E2
- Betini, G S2
- Blaquière, Holly2
- Boczulak, Stacy A2
- Bohnert, Sara A2
- Bourassa, Stéphane2
- Bowden, Joseph J2
- Bowman, Jeff2
- Buddle, Christopher M2
- Burgess, P2
- Burles, Douglas W2
- Candau, Jean-Noël2
- Carleton, R Drew2
- Cholewka, A2
- Closs, Alana M2
Access Type
61 - 80of146
Save this search
Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Filters
You do not have any saved searches
- OPEN ACCESS
- Jessica Currie,
- Joseph B. Burant,
- Valentina Marconi,
- Stephanie A. Blain,
- Sandra Emry,
- Katherine Hébert,
- Garland Xie,
- Nikki A. Moore,
- Xueqi Wang,
- Andrea Brown,
- Lara Grevstad,
- Louise McRae,
- Stefano Mezzini,
- Patrick Pata, and
- Robin Freeman
To effectively combat the biodiversity crisis, we need ambitious targets and reliable indicators to accurately track trends and measure conservation impact. In Canada, the Living Planet Index (LPI) has been adapted to produce a national indicator by both World Wildlife Fund-Canada (Canadian Living Planet Index; C-LPI) and Environment and Climate Change Canada (Canadian Species Index) to provide insight into the status of Canadian wildlife, by evaluating temporal trends in vertebrate population abundance. The indicator includes data for just over 50% of Canadian vertebrate species. To assess whether the current dataset is representative of the distribution of life history characteristics of Canadian wildlife, we analyzed the representation of species-specific biotic variables (i.e., body size, trophic level, lifespan) for vertebrates within the C-LPI compared to native vertebrates lacking LPI data. Generally, there was considerable overlap in the distribution of biotic variables for species in the C-LPI compared to native Canadian vertebrate species lacking LPI data. Nevertheless, some differences among distributions were found, driven in large part by discrepancy in the representation of fishes—where the C-LPI included larger-bodied and longer-lived species. We provide recommendations for targeted data collection and additional analyses to further strengthen the applicability, accuracy, and representativity of biodiversity indicators. - OPEN ACCESS
- Jessica Garzke,
- Ian Forster,
- Sean C. Godwin,
- Brett T. Johnson,
- Martin Krkošek,
- Natalie Mahara,
- Evgeny A. Pakhomov,
- Luke A. Rogers, and
- Brian P.V. Hunt
Migrating marine taxa encounter diverse habitats that differ environmentally and in foraging conditions over a range of spatial scales. We examined body (RNA/DNA, length-weight residuals) and nutritional (fatty acid composition) condition of juvenile sockeye salmon (Oncorhynchus nerka) in British Columbia, while migrating through oceanographically variable waters. Fish were sampled in the stratified northern Strait of Georgia (NSoG); the highly mixed Johnstone Strait (JS); and the transitional zone of Queen Charlotte Strait (QCS). In 2015, body and nutritional condition were high in the NSoG but rapidly declined to reach lowest levels in JS where prey availability was low, before showing signs of compensatory growth in QCS. In 2016, juvenile salmon had significantly lower condition in the NSoG than in 2015, although zooplankton biomass was similar, condition remained low in JS, and no compensatory growth was observed in QCS. We provide evidence that differences in juvenile salmon condition between the two years were due to changes in the food quality available to juvenile fish. We propose that existing hypotheses about fish survival need to be extended to incorporate food quality in addition to quantity to understand changes in fish condition and survival between years. - OPEN ACCESS
- Alexandra M. Anderson,
- Catherine B. Jardine,
- J.R. Zimmerling,
- Erin F. Baerwald, and
- Christina M. Davy
Understanding the relationship between the height of wind turbines and wildlife fatalities is important for informing and mitigating wildlife collisions as ever taller and denser arrays of wind turbines are erected across the landscape. We examined relationships between turbine height and fatalities of bats and swallows at 811 turbines in Ontario, Canada, ranging from 119 to 186 m tall. We accounted for cut-in speeds, operational mitigation, and taller turbines projecting carcasses farther from the turbine base than shorter turbines. Fatalities of hoary bats (Lasiurus cinereus Palisot de Beauvois, 1796), silver-haired bats (Lasionycteris noctivagans Le Conte, 1831), and big brown bats (Eptesicus fuscus Palisot de Beauvois, 1796) increased with increased maximum blade height of turbines. In contrast, fatalities of little brown bat (Myotis lucifugus Le Conte, 1831) and eastern red bat (Lasiurus borealis Müller, 1776) decreased with increased turbine height. Fatalities of purple martins (Progne subis Linnaeus, 1758) and tree swallows (Tachycineta bicolor Vieillot, 1808) were higher at taller turbines than shorter turbines. However, fatalities of cliff swallow (Petrochelidon pyrrhonota Vieillot, 1817) and barn swallow (Hirundo rustica Linnaeus, 1758) were not associated with turbine height. Our results suggest that varying flight height among species may be one factor affecting collision risk. - OPEN ACCESS
- OPEN ACCESSMercury mass balance models (MMBMs) for fish are powerful tools for understanding factors affecting growth and food consumption by free-ranging fish in rivers, lakes, and oceans. Moreover, MMBMs can be used to predict the consequences of global mercury reductions, overfishing, and climate change on mercury (Hg) concentration in commercially and recreationally valuable species of fish. Such predictions are useful in decision-making by resource managers and public health policy makers, because mercury is a neurotoxin and the primary route of exposure of mercury to humans is via consumption of fish. Recent evidence has emerged to indicate that the current-day version of MMBMs overestimates the rate at which fish eliminate mercury from their bodies. Consequently, MMBMs overestimate food consumption by fish and underestimate Hg concentration in fish. In this perspective, we explore underlying reasons for this overestimation of Hg-elimination rate, as well as consequences and implications of this overestimation. We highlight emerging studies that distinguish species and sex as contributing factors, in addition to body weight and water temperature, that can play an important role in how quickly Hg is eliminated from fish. Future research directions for refining MMBMs are discussed.
- OPEN ACCESSOpen access (OA) allows for peer-reviewed research to be freely accessed and there has been a collective shift from both researchers and publishers towards more OA publishing. OA typically occurs either through article-processing charges (the gold road) or via self-archiving (the green road); the former can be expensive, while the latter has seen minimal uptake. The gold road of OA has led to predatory publishers and, to some, questionable publications. Here, I used publicly available grant information in Canada and combined this with individual publishing statistics to test a variety of factors and their influence on OA publishing. I showed that an individual’s award amount, H-index, and gender did not influence the proportion of OA articles they published, but an individual’s H-index scaled with the number of OA publications. Institute size influenced OA publishing patterns, with researchers at large universities (i.e., >20 000 full-time students) publishing proportionately more OA articles than medium and small institutes. I discuss the potential for this pattern to build on pre-existing systemic biases when it comes to funding and publishing.
- OPEN ACCESS
- Jannie F. Linnebjerg,
- Julia E. Baak,
- Tom Barry,
- Maria V. Gavrilo,
- Mark L. Mallory,
- Flemming R. Merkel,
- Courtney Price,
- Jakob Strand,
- Tony R. Walker, and
- Jennifer F. Provencher
Marine plastic is a ubiquitous environmental problem that can have an impact on a variety of marine biota, such as seabirds, making it an important concern for scientists and policy makers. Although research on plastic ingestion by seabirds is increasing, few studies have examined policies and long-term monitoring programs to reduce marine plastic in the Arctic. This paper provides a review of international, national, and regional policies and long-term monitoring programs that address marine plastic in relation to seabirds in the Arctic countries: Canada, the Kingdom of Denmark (Greenland and the Faroe Islands), Finland, Iceland, Norway, the Russian Federation, Sweden, and the United States of America. Results show that a broad range of international, national, regional and local policies address marine debris, specifically through waste management and the prevention of pollution from ships. However, few policies directly address seabirds and other marine biota. Further, policies are implemented inconsistently across regions, making it difficult to enforce and monitor the efficacy of these policies given the long-range transport of plastic pollution globally. To reduce marine plastic pollution in the Arctic environment, pan-Arctic and international collaboration is needed to implement standardized policies and long-term monitoring programs for marine plastic in the Arctic and worldwide. - OPEN ACCESS
- Martin Krkošek,
- Madeline Jarvis-Cross,
- Kiran Wadhawan,
- Isha Berry,
- Jean-Paul R. Soucy,
- Korryn Bodner,
- Ariel Greiner,
- Leila Krichel,
- Stephanie Penk,
- Dylan Shea,
- Juan S. Vargas Soto,
- Ed W. Tekwa,
- Nicole Mideo, and
- Péter K. Molnár
This study empirically quantifies dynamics of SARS-CoV-2 establishment and early spread in Canada. We developed a transmission model that was simulation tested and fitted in a Bayesian framework to timeseries of new cases per day prior to physical distancing interventions. A hierarchical version was fitted to all provinces simultaneously to obtain average estimates for Canada. Across scenarios of a latent period of 2–4 d and an infectious period of 5–9 d, the R0 estimate for Canada ranges from a minimum of 3.0 (95% CI: 2.3–3.9) to a maximum of 5.3 (95% CI: 3.9–7.1). Among provinces, the estimated commencement of community transmission ranged from 3 d before to 50 d after the first reported case and from 2 to 25 d before the first reports of community transmission. Among parameter scenarios and provinces, the median reduction in transmission needed to obtain R0 < 1 ranged from 46% (95% CI: 43%–48%) to 89% (95% CI: 88%–90%). Our results indicate that local epidemics of SARS-CoV-2 in Canada entail high levels of stochasticity, contagiousness, and observation delay, which facilitates rapid undetected spread and requires comprehensive testing and contact tracing for its containment. - OPEN ACCESSRoad salt runoff is a leading cause of secondary freshwater salinization in north temperate climates. Increased chloride concentrations in freshwater can be toxic and lead to changes in organismal behavior, lethality, biotic homogenization, and altered food webs. High chloride concentrations have been reported for winter months in urban centers, as road density is highest in cities. However, summer chloride conditions are not typically studied as road salt is not actively applied outside of winter months, yet summer is when many taxa reproduce and are most sensitive to chloride. In our study, we test the spatial variability of summer chloride conditions across four watersheds in Toronto, Canada. We find 89% of 214 sampled sites exceeded the federal chronic exposure guidelines for chloride, and 13% exceeded the federal acute guidelines. Through a model linking concentration to cumulative proportion of impacted species, we estimate 34% of sites show in excess of one-quarter of all species may be impacted by their site-specific chloride concentrations, with up to two-thirds of species impacted at some sites. Our results suggest that even presumed low seasons for chloride show concentrations sufficient to cause significant negative impacts to aquatic communities.
- OPEN ACCESSBalancing human well-being with the maintenance of ecosystem services (ES) for future generations has become one of the central sustainability challenges of the 21st century. In working landscapes, past and ongoing production-centered objectives have resulted in the conversion of ecosystems into simple land-use types, which has also altered the provision of most ES. These inevitable trade-offs between the efficient production of individual provisioning ES and the maintenance of regulating and cultural ES call for the development of a land-use strategy based on the multifunctional use of the landscape. Due to the heterogeneous nature of working landscapes, both protection and restoration actions are needed to improve their multifunctionality. Systematic conservation planning (SCP) offers a decision support framework that can support landscape multifunctionality by indicating where ES management efforts should be implemented. We describe an approach that we developed to include ES provision protection and restoration objectives in SCP with the goal of providing ongoing benefits to society. We explain the general framework of this approach and discuss concepts, challenges, innovations, and prospects for the further development of a comprehensive decision support tool. We illustrate our approach with two case studies implemented in the pan-Canadian project ResNet.
- OPEN ACCESS
- Leonardo B. Custode,
- Matthew M. Guzzo,
- Natasha Bush,
- Claire Ewing,
- Michael Procko,
- Samantha M. Knight,
- Marie-Michele Rousseau-Clair, and
- D. Ryan Norris
Nongovernmental organizations contribute to the securement and management of protected areas, but it is not well known how their lands compare to government protected areas or the effectiveness of different land acquisition strategies. Using data from the International Union for Conservation of Nature and BirdLife International, we estimated total and at-risk terrestrial native vertebrate species richness in southern Canada among (i) private protected areas secured by the Nature Conservancy of Canada (NCC), government protected areas, and randomly sampled land; (ii) conservation agreements and fee simple (directly acquired) NCC properties; and (iii) purchased or donated fee simple properties. Controlling for property size and ecoregion, NCC protected areas were predicted to be in areas with 6% and 13% more total and at-risk species than randomly sampled land and 4% and 6% more total and at-risk species than government protected areas. Within NCC protected areas, conservation agreements were predicted to be in areas with 2% and 4% more total and at-risk species than fee simple properties, but purchased properties had similar numbers of total and at-risk species as donated properties. Although we caution that diversity estimates were based on course-grained range maps, our findings suggest that private protected areas are important in conserving biodiversity. - OPEN ACCESS
- Steven J. Cooke,
- Robert J. Lennox,
- Jacob W. Brownscombe,
- Sara J. Iverson,
- Frederick G. Whoriskey,
- Joshua J. Millspaugh,
- Nigel E. Hussey,
- Glenn T. Crossin,
- Brendan J. Godley, and
- Robert Harcourt
Monitoring animals with electronic tags is an increasingly important tool for fundamental and applied ecological research. Based on the size of the system under study, the ability to recapture the animal, and research medium (e.g., aerial, freshwater, saltwater, terrestrial), tags selected may either log data in memory (bio-logging), transmit it to a receiver or satellite (biotelemetry), or have a hybrid design. Over time, we perceive that user groups are diverging based on increasing use of technology specific terms, favouring either bio-logging or biotelemetry. It is crucial to ensure that a divide does not become entrenched in the community because it will likely hinder efforts to advance field and analytical methods and reduce accessibility of animal tracking with electronic tags to early-career and new researchers. We discuss the context for this emerging problem and the evidence that this is manifesting within the scientific community. Finally, we suggest how the animal tracking community may work to address this issue to maximize the benefits of information transfer and integration between users of the two technologies. - OPEN ACCESSScientists, like all humans, are subject to self-deceptive valuations of their importance and profile. Vainglorious practice is annoying but mostly harmless when restricted to an individual’s perception of self-worth. Language that can be associated with self-promotion and aggrandizement is destructive when incorporated into scientific writing. So too is any practice that oversells the novelty of research or fails to provide sufficient scholarship on the uniqueness of results. We evaluated whether such tendencies have been increasing over time by assessing the frequencies of articles claiming to be “the first”, and those that placed the requirement for scholarship on readers by using phrases such as “to the best of our knowledge”. Our survey of titles and abstracts of 176 journals in ecology and environmental biology revealed that the frequencies of both practices increased linearly over the past half century. We thus warn readers, journal editors, and granting agencies to use caution when assessing the claimed novelty of research contributions. A system-wide reform toward more cooperative science that values humility, and abhors hubris, might help to rectify the problem.
- OPEN ACCESS
- Shawn R. Craik,
- Rodger D. Titman,
- Anna M. Calvert,
- Gregory J. Robertson,
- Mark L. Mallory, and
- Sarah E. Gutowsky
The addition of eggs to a nest by a conspecific is known for approximately 250 bird species. Understanding the evolution of conspecific brood parasitism (CBP) requires assessment of fitness consequences to the egg recipient (host). We addressed host traits and the effects of CBP on future reproduction (i.e., annual survival) and hatching success of hosts by following the nesting of 206 red-breasted mergansers (Mergus serrator) for a colony in which an average of 41% of nests was parasitized annually. Each host was tracked for ≥2 seasons and up to seven seasons. The proportion of a host’s nesting attempts that was parasitized averaged 43% and varied considerably across individuals (range 0%–100%). Probability of parasitism, however, was not repeatable across a host’s nests. Rather, rates of CBP throughout a host’s lifetime increased with earlier dates of nest initiation. CBP had no effect on annual survival of a host. Hatching success throughout a host’s lifetime declined with a greater number of foreign eggs added to the individual’s nests. This study revealed that there may be measurable costs of CBP to lifetime reproductive success in red-breasted mergansers, although our observations suggest that costs to hosts are limited to the most heavily parasitized clutches. - OPEN ACCESS
An analysis of threats and factors that predict trends in Canadian vertebrates designated as at-risk
The identification of factors that predict trends in population abundance is critical to formulate successful conservation strategies. Here, we explore population trends of Canadian vertebrates assessed as “at-risk” by the Committee on the Status of Endangered Wildlife in Canada and the threats affecting these trends using data from the Canadian Living Planet Index. We investigate how threat profiles—the combination of threats for a given species—vary among species and taxonomic groups. We then investigate threat profile as a predictor of temporal trends—both exclusively and in combination with additional biotic and abiotic factors. Species had 5.06 (±2.77) threats listed on average, and biological resource use (BRU) was the most frequently cited. Our analysis also revealed an association between taxonomic group and population trends, as measured by the proportion of annual increases (years with a positive interannual change). By contrast, the predictive power of threat profile was poor. This analysis yielded some useful insight for conservation action, particularly the prioritization of abating BRU. However, the predictive models were not as meaningful as originally anticipated. We provide recommendations on methodological improvements to advance the understanding of factors that predict trends in population abundance for prioritizing conservation action. - OPEN ACCESSHarvest records suggest that the abundance of bobcats (Lynx rufus) has increased and the leading edge of their distribution has spread northward, while the trailing edge of the Canada lynx (Lynx canadensis) range has contracted in Ontario, Canada. There has been a debate about whether these closely related felids might compete in areas of sympatry, but there is little research on sympatric populations of bobcat and lynx. Both species are found on the north shore of Lake Huron in Ontario, Canada, which provided an opportunity to investigate their spatial patterns and habitat use. We surveyed snowmobile routes for snow tracks over three winters and estimated probability of occupancy for the two felid species while accounting for detectability. Bobcat and lynx tracks were never found on the same survey route. Bobcat occupancy increased with habitat heterogeneity, whereas lynx occupancy increased with homogeneity. Our results fit with the common assumption of the generalist and specialist natures of bobcat and lynx, respectively. Our findings suggest that bobcats invaded former lynx territory after these areas became vacant. The story of the bobcat and the lynx is one of the loss of a unique, boreal specialist due to anthropogenic change, and eventual replacement by an adaptable generalist.
- OPEN ACCESSShale-gas production could impact freshwater quality through contamination of the physical and chemical habitat (e.g., fracturing fluids, untreated or treated effluent) or development-related impacts. Despite environmental concerns, information is lacking to support biomonitoring as a diagnostic tool to assess impacts of shale-gas production. We characterized water quality and biota in areas of high shale gas potential (Early Carboniferous bedrock in New Brunswick, Canada) and surrounding geologic areas, and we assessed patterns in benthic macroinvertebrate (BMI) and fish assemblages. Early Carboniferous stations differed primarily based on water chemistry, and BMI were associated with a gradient in conductivity and temperature across geologic classes. Concordance analysis indicated similar classification of stations by both organism groups, though fish were more related to turbidity and nutrients. Concordance among fish and BMI was strongest at high conductivity, Early Carboniferous stations. These results suggest that geology plays a strong role in driving abiotic habitats and biotic communities of streams, even at small spatial scales. Furthermore, they suggest BMI and fish can provide complementary information for biomonitoring in shale-gas development areas, with BMI responding to increased ion concentrations from surface water contamination, and fish responding to changes in nutrients and turbidity resulting from development.
- OPEN ACCESS
- R. Drew Carleton,
- Emily Owens,
- Holly Blaquière,
- Stéphane Bourassa,
- Joseph J. Bowden,
- Jean-Noël Candau,
- Ian DeMerchant,
- Sara Edwards,
- Allyson Heustis,
- Patrick M.A. James,
- Alison M. Kanoti,
- Chris J.K. MacQuarrie,
- Véronique Martel,
- Eric R.D. Moise,
- Deepa S. Pureswaran,
- Evan Shanks, and
- Rob C. Johns
Insect outbreaks can cover vast geographic areas making it onerous to cost-effectively monitor populations to address management or ecological questions. Community science (or citizen science), which entails engaging the public to assist with data collection, provides a possible solution to this challenge for the spruce budworm (Choristoneura fumiferana Clemens), a major defoliating pest in North America. Here, we lay out the Budworm Tracker Program, a contributory community science program developed to help monitor spruce budworm moths throughout eastern Canada. The program outsources free pheromone trap kits to volunteers who periodically check and collect moths from their traps throughout the budworm flight period, then return them in a prepaid envelope to the organizers. Over three years, the program engaged an average of 216–375 volunteers and yielded a data return rate of 68%–89%, for a total of 16 311–54 525 moths per year. Volunteer retention among years was 71%–89%. Data from this program offer compelling evidence for the range of long-distance moth dispersal. Although our program was designed for spruce budworm, this template could easily be adapted for forestry, urban forestry, and agricultural systems to monitor any of the numerous organisms for which there is an established trapping method. - OPEN ACCESS
- Kyle A. Schang,
- Andrew J. Trant,
- Sara A. Bohnert,
- Alana M. Closs,
- Megan Humchitt,
- Kelsea P. McIntosh,
- Robert G. Way, and
- Sara B. Wickham
The relationship between Indigenous peoples and the functioning of terrestrial ecosystems has received increased attention in recent years. As a result, it is becoming more critical for researchers focusing on terrestrial ecosystems to work with Indigenous groups to gain a better understanding of how past and current stewardship of these lands may influence results. As a case study to explore these ideas, we systematically reviewed articles from 2008 to 2018 where research was conducted in North America, South America, and Oceania. Of the 159 articles included, 11 included acknowledgement of Indigenous stewardship, acknowledged the Indigenous Territories or lands, or named the Indigenous group on whose Territory the research was conducted. Within the scope of this case study, our results demonstrate an overall lack of Indigenous acknowledgement or consideration within the scope of our review. Given the recent advancements in our understanding of how Indigenous groups have shaped their lands, we implore researchers to consider collaboration among local Indigenous groups as to better cultivate relationships and foster a greater understanding of their ecosystems. - OPEN ACCESS
- Amy K. Teffer,
- Jonathan Carr,
- Amy Tabata,
- Angela Schulze,
- Ian Bradbury,
- Denise Deschamps,
- Carole-Anne Gillis,
- Eric B. Brunsdon,
- Gideon Mordecai, and
- Kristina M. Miller
Infectious agents are key components of animal ecology and drivers of host population dynamics. Knowledge of their diversity and transmission in the wild is necessary for the management and conservation of host species like Atlantic salmon (Salmo salar). Although pathogen exchange can occur throughout the salmon life cycle, evidence is lacking to support transmission during population mixing at sea or between farmed and wild salmon due to aquaculture exposure. We tested these hypotheses using a molecular approach that identified infectious agents and transmission potential among sub-adult Atlantic salmon at marine feeding areas and adults in three eastern Canadian rivers with varying aquaculture influence. We used high-throughput qPCR to quantify infection profiles and next generation sequencing to measure genomic variation among viral isolates. We identified 14 agents, including five not yet described as occurring in Eastern Canada. Phylogenetic analysis of piscine orthoreovirus showed homology between isolates from European and North American origin fish at sea, supporting the hypothesis of intercontinental transmission. We found no evidence to support aquaculture influence on wild adult infections, which varied relative to environmental conditions, life stage, and host origin. Our findings identify research opportunities regarding pathogen transmission and biological significance for wild Atlantic salmon populations.