Applied Filters
- Integrative Sciences
Journal Title
Topics
- Conservation and Sustainability182
- Science and Policy145
- Science and Society113
- Earth and Environmental Sciences59
- Public Health59
- Biological and Life Sciences55
- Marine and Aquatic Sciences44
- Ecology and Evolution43
- Science Communication36
- Science Education22
- Biomedical and Health Sciences20
- Ethics15
- Epidemiology9
- Geosciences9
- Atmospheric and Climate Sciences6
- Engineering, Technology, and Mathematics6
- Plant and Agricultural Sciences6
- Data Science5
- Nutrition, Sport, and Exercise Sciences5
- Research Data Management5
- Engineering4
- Mental Health4
- Zoology4
- Mathematics and Statistics2
- Microbiology2
- Physical Sciences2
- Anatomy and Physiology1
- Chemistry1
- Clinical Sciences1
- Data Science Theory and Methods1
- Materials Science1
Publication Date
Author
- Cooke, Steven J23
- Bennett, Joseph R9
- Moher, David8
- Straus, Sharon E7
- Ban, Natalie C6
- Jacob, Aerin L6
- Lemieux, Christopher J6
- Lotze, Heike K6
- Olive, Andrea6
- Favaro, Brett5
- Loring, Philip A5
- Nguyen, Vivian M5
- Westwood, Alana R5
- Beazley, Karen F4
- Chan, Hing Man4
- Cheung, William W L4
- Ford, Adam T4
- Foster, Angel M4
- Li, Linda C4
- Mallory, Mark L4
- Menzies, Allyson K4
- Moore, Jonathan W4
- Otto, Sarah P4
- Provencher, Jennifer F4
- Rochman, Chelsea M4
Access Type
161 - 180of381
Save this search
Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Filters
Search Name | Searched On |
---|---|
Subject Areas: Integrative Sciences (381) | 9 Apr 2025 |
[Subject Areas: Integrative Sciences] AND [in Journal: FACETS] (381) | 9 Apr 2025 |
[Subject Areas: Science and Society] AND [in Journal: FACETS] (113) | 9 Apr 2025 |
You do not have any saved searches
- OPEN ACCESS
- Heike K. Lotze,
- Stefanie Mellon,
- Jonathan Coyne,
- Matthew Betts,
- Meghan Burchell,
- Katja Fennel,
- Marisa A. Dusseault,
- Susanna D. Fuller,
- Eric Galbraith,
- Lina Garcia Suarez,
- Laura de Gelleke,
- Nina Golombek,
- Brianne Kelly,
- Sarah D. Kuehn,
- Eric Oliver,
- Megan MacKinnon,
- Wendy Muraoka,
- Ian T.G. Predham,
- Krysten Rutherford,
- Nancy Shackell,
- Owen Sherwood,
- Elizabeth C. Sibert, and
- Markus Kienast
The abundance, distribution, and size of marine species are linked to temperature and nutrient regimes and are profoundly affected by humans through exploitation and climate change. Yet little is known about long-term historical links between ocean environmental changes and resource abundance to provide context for current and potential future trends and inform conservation and management. We synthesize >4000 years of climate and marine ecosystem dynamics in a Northwest Atlantic region currently undergoing rapid changes, the Gulf of Maine and Scotian Shelf. This period spans the late Holocene cooling and recent warming and includes both Indigenous and European influence. We compare environmental records from instrumental, sedimentary, coral, and mollusk archives with ecological records from fossils, archaeological, historical, and modern data, and integrate future model projections of environmental and ecosystem changes. This multidisciplinary synthesis provides insight into multiple reference points and shifting baselines of environmental and ecosystem conditions, and projects a near-future departure from natural climate variability in 2028 for the Scotian Shelf and 2034 for the Gulf of Maine. Our work helps advancing integrative end-to-end modeling to improve the predictive capacity of ecosystem forecasts with climate change. Our results can be used to adjust marine conservation strategies and network planning and adapt ecosystem-based management with climate change. - OPEN ACCESS
- Gail Tomblin Murphy,
- Tara Sampalli,
- Lisa Bourque Bearskin,
- Nancy Cashen,
- Greta Cummings,
- Annette Elliott Rose,
- Josephine Etowa,
- Doris Grinspun,
- Esyllt W. Jones,
- Mélanie Lavoie-Tremblay,
- Kathleen MacMillan,
- Cindy MacQuarrie,
- Ruth Martin-Misener,
- Judith Oulton,
- Rosemary Ricciardelli,
- Linda Silas,
- Sally Thorne, and
- Michael Villeneuve
Nurses represent the highest proportion of healthcare workers globally and have played a vital role during the COVID-19 pandemic. The pandemic has shed light on multiple vulnerabilities that have impacted the nursing workforce including critical levels of staffing shortages in Canada. A review sponsored by the Royal Society of Canada investigated the impact of the pandemic on the nursing workforce in Canada to inform planning and implementation of sustainable nursing workforce strategies. The review methods included a trend analysis of peer-reviewed articles, a jurisdictional scan of policies and strategies, analyses of published surveys and interviews of nurses in Canada, and a targeted case study from Nova Scotia and Saskatchewan. Findings from the review have identified longstanding and COVID-specific impacts, gaps, and opportunities to strengthen the nursing workforce. These findings were integrated with expert perspectives from national nursing leaders involved in guiding the review to arrive at recommendations and actions that are presented in this policy brief. The findings and recommendations from this policy brief are meant to inform a national and sustained focus on retention and recruitment efforts in Canada. - OPEN ACCESS
- Christopher J. Lemieux,
- Karen F. Beazley,
- David MacKinnon,
- Pamela Wright,
- Daniel Kraus,
- Richard Pither,
- Lindsay Crawford,
- Aerin L. Jacob, and
- Jodi Hilty
The first draft of the United Nations Convention on Biological Diversity (CBD) Post-2020 Global Biodiversity Framework (GBF) includes an unprecedented call for states that have ratified the treaty (Parties) to implement measures to maintain and enhance ecological connectivity as urgent actions to abate further biodiversity loss and ecosystem decline. Considering the challenges that lie ahead for Parties to the CBD, we highlight the ways in which effective and equitable connectivity conservation can be achieved through four transformative changes, including: (1) mainstreaming connectivity retention and restoration within biodiversity conservation sector and influencing sectors (e.g., transportation, energy, agriculture, forestry); (2) mainstreaming financial resources and incentives to support effective implementation; (3) fostering collaboration with a focus on cross-sector collective action; and (4) investing in diverse forms of knowledge (co-)production and management in support of adaptive governance. We detail 15 key actions that can be used to support the implementation of these transformative changes. While ambitious, the transformative changes and associated key actions recommended in this perspective will need to be put in place with unprecedented urgency, coherency, and coordination if Parties to the CBD truly aspire to achieve the goals and targets of the forthcoming Post-2020 GBF in this new decade of biodiversity. - OPEN ACCESS
- R.T. Noel Gibney,
- Cynthia Blackman,
- Melanie Gauthier,
- Eddy Fan,
- Robert Fowler,
- Curtis Johnston,
- R. Jeremy Katulka,
- Samuel Marcushamer,
- Kusum Menon,
- Tracey Miller,
- Bojan Paunovic, and
- Teddie Tanguay
The COVID-19 pandemic has exposed the precarious demand-capacity balance in Canadian hospitals, including critical care where there is an urgent need for trained health care professionals to dramatically increase ICU capacity.The impact of the pandemic on ICUs varied significantly across the country with provinces that implemented public health measures later and relaxed them sooner being impacted more severely. Pediatric ICUs routinely admitted adult patients. Non-ICU areas were converted to ICUs and staff were redeployed from other essential service areas. Faced with a lack of critical care capacity, triage plans for ICU admission were developed and nearly implemented in some provinces.Twenty eight percent of patients in Canadian ICUs who required mechanical ventilation died. Surviving patients have required prolonged ICU admission, hospitalization and extensive ongoing rehabilitation. Family members of patients were not permitted to visit, resulting in additional psychological stresses to patients, families, and healthcare teams. ICU professionals also experienced extreme psychological stresses from caring for such large numbers of critically ill patients, often in sub-standard conditions. This resulted in large numbers of health workers leaving their professions.This pandemic is not yet over, and it is likely that new pandemics will follow. A review and recommendations for the future are provided. - OPEN ACCESS
- Eric Kai-Chung Wong,
- Jennifer Watt,
- Hanyan Zou,
- Arthana Chandraraj,
- Alissa Wenyue Zhang,
- Jahnel Brookes,
- Ashley Verduyn,
- Anna Berall,
- Richard Norman,
- Katrina Lynn Piggott,
- Terumi Izukawa,
- Sharon E. Straus, and
- Barbara Arlena Liu
Atypical disease presentations are common in older adults with COVID-19. The objective of this study was to determine the prevalence of atypical and typical symptoms in older adults with COVID-19 through progressive pandemic waves and the association of these symptoms with in-hospital mortality. This retrospective cohort study included consecutive adults aged over 65 years with confirmed COVID-19 infection who were admitted to seven hospitals in Toronto, Canada, from 1 March 2020 to 30 June 2021. The median age for the 1786 patients was 78.0 years and 847 (47.5%) were female. Atypical symptoms (as defined by geriatric syndromes) occurred in 1187 patients (66.5%), but rarely occurred in the absence of other symptoms (n = 106; 6.2%). The most common atypical symptoms were anorexia (n = 598; 33.5%), weakness (n = 519; 23.9%), and delirium (n = 449; 25.1%). Dyspnea (adjusted odds ratio [aOR] 2.05; 95% confidence interval [CI] 1.62–2.62), tachycardia (aOR 1.87; 95% CI 1.14–3.04), and delirium (aOR 1.52; 95% CI 1.18–1.96) were independently associated with in-hospital mortality. In a cohort of older adults hospitalized with COVID-19 infection, atypical presentations frequently overlapped with typical symptoms. Further research should be directed at understanding the cause and clinical significance of atypical presentations in older adults. - OPEN ACCESS
- Sachiko Ouchi,
- Lori Wilson,
- Colette C.C. Wabnitz,
- Christopher D. Golden,
- Anne H. Beaudreau,
- Tiff-Annie Kenny,
- Gerald G. Singh,
- William W.L. Cheung,
- Hing Man Chan, and
- Anne K. Salomon
Understanding mechanisms that promote social-ecological resilience can inform future adaptation strategies. Among seafood dependent communities, these can be illuminated by assessing change among fisheries portfolios. Here, in collaboration with a Coast Salish Nation in British Columbia, Canada, we used expert Indigenous knowledge and network analyses to chronicle differences in fisheries portfolios pre and post a social-ecological regime shift. We then evaluated key drivers of change using semi-structured interviews. We found that while portfolios decreased in diversity of seafood types harvested and consumed among individuals overtime, portfolios increased in their diversification at the community level because more similar seafoods within less diverse individual portfolios were more commonly harvested and consumed by the Nation as a whole. Thus, diversity can operate simultaneously in opposing directions at different scales of organization. Experts identified four key mechanisms driving these changes, including commercial activities controlled by a centralized governance regime, intergenerational knowledge loss, adaptive learning to new ecological and economic opportunities, and the trading of seafood with other Indigenous communities. Unexpectedly, increased predation by marine mammals was also flagged as a key driver of change. Adaptation strategies that support access to and governance of diverse fisheries, exchange of seafoods among communities, and knowledge transfer among generations would promote social-ecological resilience, food security, and community well-being. - OPEN ACCESS
- Jessica Currie,
- Joseph B. Burant,
- Valentina Marconi,
- Stephanie A. Blain,
- Sandra Emry,
- Katherine Hébert,
- Garland Xie,
- Nikki A. Moore,
- Xueqi Wang,
- Andrea Brown,
- Lara Grevstad,
- Louise McRae,
- Stefano Mezzini,
- Patrick Pata, and
- Robin Freeman
To effectively combat the biodiversity crisis, we need ambitious targets and reliable indicators to accurately track trends and measure conservation impact. In Canada, the Living Planet Index (LPI) has been adapted to produce a national indicator by both World Wildlife Fund-Canada (Canadian Living Planet Index; C-LPI) and Environment and Climate Change Canada (Canadian Species Index) to provide insight into the status of Canadian wildlife, by evaluating temporal trends in vertebrate population abundance. The indicator includes data for just over 50% of Canadian vertebrate species. To assess whether the current dataset is representative of the distribution of life history characteristics of Canadian wildlife, we analyzed the representation of species-specific biotic variables (i.e., body size, trophic level, lifespan) for vertebrates within the C-LPI compared to native vertebrates lacking LPI data. Generally, there was considerable overlap in the distribution of biotic variables for species in the C-LPI compared to native Canadian vertebrate species lacking LPI data. Nevertheless, some differences among distributions were found, driven in large part by discrepancy in the representation of fishes—where the C-LPI included larger-bodied and longer-lived species. We provide recommendations for targeted data collection and additional analyses to further strengthen the applicability, accuracy, and representativity of biodiversity indicators. - OPEN ACCESSSince the initial outbreak in December 2019, the COVID-19 pandemic has resulted in more than four million deaths worldwide. Ecuador initially experienced one of the worst coronavirus outbreaks in the world. The pandemic quickly overwhelmed health care systems resulting in excess deaths of 37 000 from March to October, 2020. The public health measures taken to stop the spread of the virus had a devastating impact on the economy. There was a sharp contraction (7.8%) in Ecuador’s GDP in 2020. Furthermore, income poverty and inequality increased dramatically. The lasting effects of the pandemic will be harder to overcome. This article recounts and analyzes the COVID-19 pandemic in Ecuador, to draw lessons from this complex experience, and from the benefit of limited but important successes. We also aim to provide suggestions for best practices moving forward.
- OPEN ACCESS
- Alexandra M. Anderson,
- Catherine B. Jardine,
- J.R. Zimmerling,
- Erin F. Baerwald, and
- Christina M. Davy
Understanding the relationship between the height of wind turbines and wildlife fatalities is important for informing and mitigating wildlife collisions as ever taller and denser arrays of wind turbines are erected across the landscape. We examined relationships between turbine height and fatalities of bats and swallows at 811 turbines in Ontario, Canada, ranging from 119 to 186 m tall. We accounted for cut-in speeds, operational mitigation, and taller turbines projecting carcasses farther from the turbine base than shorter turbines. Fatalities of hoary bats (Lasiurus cinereus Palisot de Beauvois, 1796), silver-haired bats (Lasionycteris noctivagans Le Conte, 1831), and big brown bats (Eptesicus fuscus Palisot de Beauvois, 1796) increased with increased maximum blade height of turbines. In contrast, fatalities of little brown bat (Myotis lucifugus Le Conte, 1831) and eastern red bat (Lasiurus borealis Müller, 1776) decreased with increased turbine height. Fatalities of purple martins (Progne subis Linnaeus, 1758) and tree swallows (Tachycineta bicolor Vieillot, 1808) were higher at taller turbines than shorter turbines. However, fatalities of cliff swallow (Petrochelidon pyrrhonota Vieillot, 1817) and barn swallow (Hirundo rustica Linnaeus, 1758) were not associated with turbine height. Our results suggest that varying flight height among species may be one factor affecting collision risk. - OPEN ACCESSAcademic scientists face an unpredictable path from plant biology research to real-life application. Fundamental studies of γ-aminobutyrate and carotenoid metabolism, control of Botrytis infection, and the uptake and distribution of mineral nutrients illustrate that most academic research in plant biology could lead to innovative solutions for food, agriculture, and the environment. The time to application depends on various factors such as the fundamental nature of the scientific questions, the development of enabling technologies, the research priorities of funding agencies, the existence of competitive research, the willingness of researchers to become engaged in commercial activities, and ultimately the insight and creativity of the researchers. Applied research is likely to be adopted more rapidly by industry than basic research, so academic scientists engaged in basic research are less likely to participate in science commercialization. It is argued that the merit of Discovery Grant applications to the Natural Sciences and Engineering Research Council (NSERC) of Canada should not be evaluated for their potential impact on policy and (or) technology. Matching industry funds in Canada rarely support the search for knowledge. Therefore, NSERC Discovery Grants should fund basic research in its entirety.
- OPEN ACCESS
- Liette Vasseur,
- Bradley May,
- Meredith Caspell,
- Alex Marino,
- Pulkit Garg,
- Jocelyn Baker, and
- Samantha Gauthier
Communities in coastal areas of Canada, including the Great Lakes, face a number of challenges, including increased water level variability and extreme weather events, causing flooding and localized erosion. To effectively respond to these coastal risks requires structured, deliberative approaches with the aim of fostering resilience and contributing to sustainability. A collaborative engagement process was used to explore community challenges. This included a project launch, key informant interviews, meetings, focus groups (agriculture, tourism, youth), and on-line methods (shoreline residents). Participatory social network analysis and theory of change were used for overall sense-making. As a result, community members identified six impact pathways moving forward with climate action: partnerships and collaboration; strategic engagement; water and watersheds; ecosystem-based adaptation; shoreline protection; and education. These themes are consistent with current theory on sustainability and theory of change development. - OPEN ACCESSAlthough many studies have focused on the importance of littering and (or) illegal dumping as a source of plastic pollution to freshwater, other relevant pathways should be considered, including wastewater, stormwater runoff, industrial effluent/runoff, and agricultural runoff. Here, we conducted a meta-analysis focused on these four pathways. We quantified the number of studies, amount and characteristics of microplastics reported, and the methods used to sample and measure microplastics from each pathway. Overall, we found 121 studies relevant to our criteria, published from 2014 to 2020. Of these, 54 (45%) quantified and characterized microplastics in discharge pathways. Although most focused on wastewater treatment plant effluent (85%), microplastic concentrations were highest in stormwater runoff (0.009 to 3862 particles/L). Morphologies of particles varied among pathways and sampling methods. For example, stormwater runoff was the only pathway with rubbery particles. When assessing methods, our analysis suggested that water filtered through a finer (<200 um) mesh and of a smaller volume (e.g., 6 L) captured more particles, and with a slightly greater morphological diversity. Overall, our meta-analysis suggested that all four pathways bring microplastics into freshwater ecosystems, and further research is necessary to inform the best methods for monitoring and to better understand hydrologic patterns that can inform local mitigation.
- OPEN ACCESS
- Steve E. Hrudey,
- Heather N. Bischel,
- Jeff Charrois,
- Alex H. S. Chik,
- Bernadette Conant,
- Rob Delatolla,
- Sarah Dorner,
- Tyson E. Graber,
- Casey Hubert,
- Judy Isaac-Renton,
- Wendy Pons,
- Hannah Safford,
- Mark Servos, and
- Christopher Sikora
Wastewater surveillance for SARS-CoV-2 RNA is a relatively recent adaptation of long-standing wastewater surveillance for infectious and other harmful agents. Individuals infected with COVID-19 were found to shed SARS-CoV-2 in their faeces. Researchers around the world confirmed that SARS-CoV-2 RNA fragments could be detected and quantified in community wastewater. Canadian academic researchers, largely as volunteer initiatives, reported proof-of-concept by April 2020. National collaboration was initially facilitated by the Canadian Water Network.Many public health officials were initially skeptical about actionable information being provided by wastewater surveillance even though experience has shown that public health surveillance for a pandemic has no single, perfect approach. Rather, different approaches provide different insights, each with its own strengths and limitations. Public health science must triangulate among different forms of evidence to maximize understanding of what is happening or may be expected. Well-conceived, resourced, and implemented wastewater-based platforms can provide a cost-effective approach to support other conventional lines of evidence. Sustaining wastewater monitoring platforms for future surveillance of other disease targets and health states is a challenge. Canada can benefit from taking lessons learned from the COVID-19 pandemic to develop forward-looking interpretive frameworks and capacity to implement, adapt, and expand such public health surveillance capabilities. - OPEN ACCESSFreshwater ecosystems show more biodiversity loss than terrestrial or marine systems. We present a systematic conservation planning analysis in the Arctic Ocean drainage basin in Ontario, Canada, to identify key watersheds for the conservation of 30 native freshwater fish, including four focal species: lake sturgeon, lake whitefish, brook trout, and walleye. We created species distribution models for 30 native fish species and accounted for anthropogenic impacts. We used the “prioritizr” package in R to select watersheds that maximize species targets, minimize impacts, and meet area-based targets based on the Convention on Biological Diversity commitment to protect 17% of terrestrial and freshwater areas by 2020 and the proposed target to protect 30% by 2030. We found that, on average, 17.4% and 29.8% of predicted species distributions were represented for each of the 30 species in the 17% and 30% area-based solutions, respectively. The outcomes were more efficient when we prioritized for individual species, particularly brook trout, where 24% and 36% of its predicted distribution was represented in the 17% and 30% solutions, respectively. Future conservation planning should consider climate change, culturally significant species and areas, and the importance of First Nations as guardians and stewards of the land in northern Ontario.
- OPEN ACCESS
- OPEN ACCESS
- Grace E.P. Murphy,
- Jillian C. Dunic,
- Emily M. Adamczyk,
- Sarah J. Bittick,
- Isabelle M. Côté,
- John Cristiani,
- Emilie A. Geissinger,
- Robert S. Gregory,
- Heike K. Lotze,
- Mary I. O’Connor,
- Carlos A.S. Araújo,
- Emily M. Rubidge,
- Nadine D. Templeman, and
- Melisa C. Wong
Seagrass meadows are among the most productive and diverse marine ecosystems, providing essential structure, functions, and services. They are also among the most impacted by human activities and in urgent need of better management and protection. In Canada, eelgrass (Zostera marina) meadows are found along the Atlantic, Pacific, and Arctic coasts, and thus occur across a wide range of biogeographic conditions. Here, we synthesize knowledge of eelgrass ecosystems across Canada’s coasts, highlighting commonalities and differences in environmental conditions, plant, habitat, and community structure, as well as current trends and human impacts. Across regions, eelgrass life history, phenology, and general species assemblages are similar. However, distinct regional differences occur in environmental conditions, particularly with water temperature and nutrient availability. There is considerable variation in the types and strengths of human activities among regions. The impacts of coastal development are prevalent in all regions, while other impacts are of concern for specific regions, e.g., nutrient loading in the Atlantic and impacts from the logging industry in the Pacific. In addition, climate change represents a growing threat to eelgrass meadows. We review current management and conservation efforts and discuss the implications of observed differences from coast to coast to coast. - OPEN ACCESS
Thermal sensitivity and flow-mediated migratory delays drive climate risk for coastal sockeye salmon
- William I. Atlas,
- Karl M. Seitz,
- Jeremy W.N. Jorgenson,
- Ben Millard-Martin,
- William G. Housty,
- Daniel Ramos-Espinoza,
- Nicholas J. Burnett,
- Mike Reid, and
- Jonathan W. Moore
Climate change is subjecting aquatic species to increasing temperatures and shifting hydrologic conditions. Understanding how these changes affect individual survival can help guide conservation and management actions. Anadromous Pacific salmon (Oncorhynchus spp.) in some large river systems are acutely impacted by the river temperatures and flows encountered during their spawning migrations. However, comparatively little is known about drivers of en route mortality for salmon in smaller coastal watersheds, and climate impacts may differ across watersheds and locally adapted salmon populations. To understand the effects of climate on the survival of coastal sockeye salmon (Oncorhynchus nerka; hísn in Haíɫzaqv), we tagged 1785 individual fish with passive integrated transponders across four migration seasons in the Koeye River—a low-elevation watershed in coastal British Columbia—and tracked them during their relatively short migration (∼13 km) from river entry to spawning grounds. Overall, 64.7% of sockeye survived to enter the spawning grounds, and survival decreased rapidly when water temperatures exceeded 15 °C. The best-fitting model included an interaction between river flow and temperature, such that temperature effects were worse when flows were low, and river entry ceased at the lowest flows. Results revealed temperature-mediated mortality and migration delays from low water that may synergistically reduce survival among sockeye salmon returning to coastal watersheds. - OPEN ACCESSMany barriers to behavioural change exist when it comes to climate change action. A key element to overcoming some of these barriers is effective communication of complex scientific information. The use of visualizations, such as photographs or interactive maps, can increase knowledge dissemination, helping community members understand climatic and environmental changes. These techniques have been utilized in many disciplines but have not been widely embraced by climate change scholars. This paper discusses the utility of climate change data visualization as a tool for climate change knowledge mobilization. This paper draws on the case studying drivers of coastline change of Lake Ontario in the Town of Lincoln, Ontario, Canada. Historical aerial photographs were used to measure the rate of coastline change and visualize vulnerable sections of the coast. To better visualize the changes that occurred over time from a resident viewpoint, selected land-based historical photographs were replicated by taking new photographs at the same locations. These visualization tools can be useful to support the community in developing strategies to adapt to climate change by increasing understanding of the changes and knowledge through social learning. These tools can be generalized to other case studies dealing with community engagement in coastal adaptation efforts.
- OPEN ACCESSPacific sand lance (Ammodytes personatus) and surf smelt (Hypomesus pretiosus) are ecologically important forage fish in the marine food webs within the Salish Sea, including British Columbia (BC). Although important, little information exists around the spatiotemporal distribution of these fishes’ beach spawning habitat in the BC Salish Sea. In 2017, the Mount Arrowsmith Biosphere Region Research Institute initiated spawning beach surveys within the Mount Arrowsmith Biosphere Region (MABR). Surveys have geographically expanded along the eastern Vancouver Island coastline between Bowser and Cowichan Bay, BC, including Gabriola Island and Thetis Island. Pacific sand lance embryos have been detected at 17 beaches, with six beaches located within the MABR. Pacific sand lance spawning events have been detected between November and mid-February, with the bulk of embryos detected in November and December. To date, surf smelt embryos have not been detected at the 56 different beaches. These data begin to fill existing data gaps surrounding Pacific sand lance and surf smelt in BC. Furthermore, longer-term data submissions to the Strait of Georgia Data Centre, an open-access database, will provide the necessary data needed to advocate for improved regulatory protections for these ecologically important fish and their spawning habitat.
- OPEN ACCESSOpen access (OA) allows for peer-reviewed research to be freely accessed and there has been a collective shift from both researchers and publishers towards more OA publishing. OA typically occurs either through article-processing charges (the gold road) or via self-archiving (the green road); the former can be expensive, while the latter has seen minimal uptake. The gold road of OA has led to predatory publishers and, to some, questionable publications. Here, I used publicly available grant information in Canada and combined this with individual publishing statistics to test a variety of factors and their influence on OA publishing. I showed that an individual’s award amount, H-index, and gender did not influence the proportion of OA articles they published, but an individual’s H-index scaled with the number of OA publications. Institute size influenced OA publishing patterns, with researchers at large universities (i.e., >20 000 full-time students) publishing proportionately more OA articles than medium and small institutes. I discuss the potential for this pattern to build on pre-existing systemic biases when it comes to funding and publishing.