Applied Filters
- Biological and Life Sciences
Journal Title
Topics
- Ecology and Evolution135
- Integrative Sciences52
- Zoology43
- Earth and Environmental Sciences40
- Marine and Aquatic Sciences32
- Conservation and Sustainability31
- Genetics and Genomics23
- Microbiology19
- Plant and Agricultural Sciences18
- Biomedical and Health Sciences11
- Anatomy and Biomechanics7
- Cell and Developmental Biology7
- Epidemiology7
- Geosciences7
- Science and Society6
- Science and Policy5
- Science Communication4
- Public Health3
- Anatomy and Physiology2
- Science Education2
- Atmospheric and Climate Sciences1
- Chemistry1
- Clinical Sciences1
- Data Science1
- Ethics1
- Neuroscience1
- Physical Sciences1
- Research Data Management1
Publication Date
Author
- Hall, Britt D6
- Mallory, Mark L5
- Miller, Kristina M5
- Edwards, Sara4
- Heard, Stephen B4
- Tabata, Amy4
- Ariel, Ellen3
- Currie, Philip J3
- Davy, Christina M3
- Esenkulova, Svetlana3
- Fenton, M Brock3
- Heustis, Allyson3
- Johns, Rob C3
- Morris, Douglas W3
- Owens, Emily3
- Pureswaran, Deepa S3
- Robertson, Gregory J3
- Sutherland, Ben J G3
- Walker, Allison K3
- Addison, Jason A2
- Barry, Tegan N2
- Bates, Amanda E2
- Becker, Daniel J2
- Blaquière, Holly2
- Blunt, Brian J2
Access Type
61 - 80of190
Save this search
Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Filters
Search Name | Searched On |
---|---|
Subject Areas: Biological and Life Sciences (190) | 21 Nov 2024 |
You do not have any saved searches
- OPEN ACCESSWe used moored 75 kHz acoustic Doppler current profilers (ADCPs) to examine seasonal cycles in zooplankton deep scattering layers (DSLs) observed below 1300 m depth at Endeavour Ridge hydrothermal vents. DSLs are present year-round in the lower water column near vent plumes. Temporal variations suggest passive, flow-induced displacements superimposed on migratory movements. Although the strongest DSLs are shallower than the neutrally buoyant plumes (1900–2100 m), anomalies also occur at and below plume depth. Upward movement from plume depth in the main DSL is evident in late summer/fall, resulting in shallower DSLs in winter, consistent with the timing of adult diapause/reproduction in upper-ocean migratory copepods. Movement from the upper ocean to plume depth coincides with pre-adult migration to greater depths in spring. Synchronous 20–40 d cycles in DSLs may account for patchiness in space and time of above-plume zooplankton layers observed in summer during previous net-sampling surveys, and suggests lateral and vertical migratory movements to counter current drift away from plume-derived food sources. Persistent near-bottom DSLs move vertically between the spreading plume and seafloor. Historical net data suggests that these are deep, resident fauna. Unlike upper ocean fauna, they seem to be advected considerable distances from the ridge axis, where they are evident as remnant scattering layers.
- OPEN ACCESSAddition of nutrients, such as nitrogen, can degrade water quality in lakes, rivers, and estuaries. To predict the fate of nutrient inputs, an understanding of the biogeochemical cycling of nutrients is needed. We develop and employ a novel, parsimonious, process-based model of nitrogen concentrations and stable isotopes that quantifies the competing processes of volatilization, biological assimilation, nitrification, and denitrification in nutrient-impacted rivers. Calibration of the model to nitrogen discharges from two wastewater treatment plants in the Grand River, Ontario, Canada, show that ammonia volatilization was negligible relative to biological assimilation, nitrification, and denitrification within 5 km of the discharge points.
- OPEN ACCESS
- James M.C. Jones,
- Elizabeth A. Webb,
- Michael D.J. Lynch,
- Trevor C. Charles,
- Pedro M. Antunes, and
- Frédérique C. Guinel
Carbonatites are unusual alkaline rocks with diverse compositions. Although previous work has characterized the effects these rocks have on soils and plants, little is known about their impacts on local ecosystems. Using a deposit within the Great Lakes–St. Lawrence forest in northern Ontario, Canada, we investigated the effect of a carbonatite on soil chemistry and on the structure of plant and soil microbial communities. This was done using a vegetation survey conducted above and around the deposit, with corresponding soil samples collected for determining soil nutrient composition and for assessing microbial community structure using 16S/ITS Illumina Mi-Seq sequencing. In some soils above the deposit a soil chemical signature of the carbonatite was found, with the most important effect being an increase in soil pH compared with the non-deposit soils. Both plants and microorganisms responded to the altered soil chemistry: the plant communities present in carbonatite-impacted soils were dominated by ruderal species, and although differences in microbial communities across the surveyed areas were not obvious, the abundances of specific bacteria and fungi were reduced in response to the carbonatite. Overall, the deposit seems to have created microenvironments of relatively basic soil in an otherwise acidic forest soil. This study demonstrates for the first time how carbonatites can alter ecosystems in situ. - OPEN ACCESSCimicid insects, bed bugs and their allies, include about 100 species of blood-feeding ectoparasites. Among them, a few have become widespread and abundant pests of humans. Cimicids vary in their degree of specialization to hosts. Whereas most species specialize on insectivorous birds or bats, the common bed bug can feed on a range of distantly related host species, such as bats, humans, and chickens. We suggest that association with humans and generalism in bed bugs led to fundamentally different living conditions that fostered rapid growth and expansion of their populations. We propose that the evolutionary and ecological success of common bed bugs reflected exploitation of large homeothermic hosts (humans) that sheltered in buildings. This was a departure from congeners whose hosts are much smaller and often heterothermic. We argue that interesting insights into the biology of pest species may be obtained using an integrated view of their ecology and evolution.
- OPEN ACCESS
- OPEN ACCESSCoastal biogenic habitats are vulnerable to human impacts from both terrestrial and marine realms. Yet the broad spatial scale used in current approaches of quantifying anthropogenic stressors is not relevant to the finer scales affecting most coastal habitats. We developed a standardized human impact metric that includes five bay-scale and four local-scale (0–1 km) terrestrial and marine-based impacts to quantify the magnitude of anthropogenic impacts to coastal bays and nearshore biogenic habitats. We applied this metric to 180 seagrass beds (Zostera marina), an important biogenic habitat prioritized for marine protection, in 52 bays across Atlantic Canada. The results show that seagrass beds and coastal bays exist across a wide human impact gradient and provide insight into which are the most and least affected by human threats. Generally, land alteration, nutrient loading, and shellfish aquaculture were higher in the Gulf of St. Lawrence, whereas invasive species and fishing activities were higher along the Atlantic coast. Sixty-four percent of bays were at risk of seagrass decline from nitrogen loading. We also found high within-bay variation in impact intensity, emphasizing the necessity of quantifying impacts at multiple spatial scales. We discuss implications for management and conservation planning, and application to other coastal habitats in Canada and beyond.
- OPEN ACCESS
- Beth C. Norman,
- Paul C. Frost,
- Graham C. Blakelock,
- Scott N. Higgins,
- Md Ehsanul Hoque,
- Jennifer L. Vincent,
- Katarina Cetinic, and
- Marguerite A. Xenopoulos
Silver nanoparticles (AgNPs) are an emerging class of contaminants with the potential to impact ecosystem structure and function. AgNPs are antimicrobial, suggesting that microbe-driven ecosystem functions may be particularly vulnerable to AgNP exposure. Predicting the environmental impacts of AgNPs requires in situ investigation of environmentally relevant dosing regimens over time scales that allow for ecosystem-level responses. We used 3000 L enclosures installed in a boreal lake to expose plankton communities to chronic and pulse AgNP dosing regimens with concentrations mimicking those recorded in natural waters. We compared temporal patterns of plankton responses, Ag accumulation, and ecosystem metabolism (i.e., daily ecosystem respiration, gross primary production, and net ecosystem production) for 6 weeks of chronic dosing and 3 weeks following a pulsed dose. Ag accumulated in microplankton and zooplankton, but carbon-specific Ag was nonlinear over time and generally did not predict plankton response. Ecosystem metabolism did not respond to either AgNP exposure type. This lack of response corresponded with weak microplankton responses in the chronic treatments but did not reflect the stronger microplankton response in the pulse treatment. Our results suggest that lake ecosystem metabolism is somewhat resistant to environmentally relevant concentrations of AgNPs and that organismal responses do not necessarily predict ecosystem-level responses. - OPEN ACCESSPrey individuals employ several adaptive behaviours to reduce predation risk. We need to learn how those behaviours interact in an overall strategy of risk management, how strategies vary with changing conditions, and whether some behaviours might compensate for others. I addressed these issues with manipulative experiments evaluating how snowshoe hares’ (Lepus americanus) vigilance varies with their giving-up densities (GUDs) in artificial food patches. I tested whether the results, collected when there was no evidence of predation, were congruent with an earlier study under higher predation. When predator sign was common, vigilance depended directly on habitat. But when risk was low, habitat’s influence on vigilance was indirect. Hares were least vigilant during the new moon where the distance to escape habitat was far, but only in open risky habitat. Hares were more vigilant during the full moon, but only at stations far from escape habitat. Moon phase and additional cover had no effect on GUDs that were highest at open risky stations far from escape habitat. The results suggest that reduced risk allowed hares to allocate less time to vigilance, but they needed to forage for similar amounts of food during each moon phase to maintain their energetic state.
- OPEN ACCESSThe use of fossil moth wing scales has recently been introduced as a new method to reconstruct population histories of lepidopterans and provide a proxy for insect disturbance. We investigated the potential for using wing-scale ultrastructure to distinguish between the five most common outbreak species of moth pests in eastern North America: spruce budworm (Choristoneura fumiferana Clemens), hemlock looper (Lambdina fiscellaria Guenée), forest tent caterpillar (Malacosoma disstria Hübner), blackheaded budworm (Acleris variana Fernie), and jack pine budworm (Choristoneura pinus Freeman). Using scanning electron images of scales, we made qualitative and quantitative comparisons of morphological traits at the ultrastructural level. We found that hemlock looper and eastern blackheaded budworm scales could be categorically separated from each other and from the three other species. We developed a quadratic discriminant function using measurements of ultrastructure traits that distinguishes scales of the three remaining species with an overall accuracy of 66%. We found that forest tent caterpillar could be well separated based on these traits, but we were less confident in distinguishing the closely related jack pine and spruce budworm. Our method offers potential advantages in scale identification for future studies in paleoecology, while providing the additional advantage of not requiring intact, unfolded, and undamaged scales.
- OPEN ACCESS
An analysis of threats and factors that predict trends in Canadian vertebrates designated as at-risk
The identification of factors that predict trends in population abundance is critical to formulate successful conservation strategies. Here, we explore population trends of Canadian vertebrates assessed as “at-risk” by the Committee on the Status of Endangered Wildlife in Canada and the threats affecting these trends using data from the Canadian Living Planet Index. We investigate how threat profiles—the combination of threats for a given species—vary among species and taxonomic groups. We then investigate threat profile as a predictor of temporal trends—both exclusively and in combination with additional biotic and abiotic factors. Species had 5.06 (±2.77) threats listed on average, and biological resource use (BRU) was the most frequently cited. Our analysis also revealed an association between taxonomic group and population trends, as measured by the proportion of annual increases (years with a positive interannual change). By contrast, the predictive power of threat profile was poor. This analysis yielded some useful insight for conservation action, particularly the prioritization of abating BRU. However, the predictive models were not as meaningful as originally anticipated. We provide recommendations on methodological improvements to advance the understanding of factors that predict trends in population abundance for prioritizing conservation action. - OPEN ACCESSHarvest records suggest that the abundance of bobcats (Lynx rufus) has increased and the leading edge of their distribution has spread northward, while the trailing edge of the Canada lynx (Lynx canadensis) range has contracted in Ontario, Canada. There has been a debate about whether these closely related felids might compete in areas of sympatry, but there is little research on sympatric populations of bobcat and lynx. Both species are found on the north shore of Lake Huron in Ontario, Canada, which provided an opportunity to investigate their spatial patterns and habitat use. We surveyed snowmobile routes for snow tracks over three winters and estimated probability of occupancy for the two felid species while accounting for detectability. Bobcat and lynx tracks were never found on the same survey route. Bobcat occupancy increased with habitat heterogeneity, whereas lynx occupancy increased with homogeneity. Our results fit with the common assumption of the generalist and specialist natures of bobcat and lynx, respectively. Our findings suggest that bobcats invaded former lynx territory after these areas became vacant. The story of the bobcat and the lynx is one of the loss of a unique, boreal specialist due to anthropogenic change, and eventual replacement by an adaptable generalist.
- OPEN ACCESS
- OPEN ACCESSShale-gas production could impact freshwater quality through contamination of the physical and chemical habitat (e.g., fracturing fluids, untreated or treated effluent) or development-related impacts. Despite environmental concerns, information is lacking to support biomonitoring as a diagnostic tool to assess impacts of shale-gas production. We characterized water quality and biota in areas of high shale gas potential (Early Carboniferous bedrock in New Brunswick, Canada) and surrounding geologic areas, and we assessed patterns in benthic macroinvertebrate (BMI) and fish assemblages. Early Carboniferous stations differed primarily based on water chemistry, and BMI were associated with a gradient in conductivity and temperature across geologic classes. Concordance analysis indicated similar classification of stations by both organism groups, though fish were more related to turbidity and nutrients. Concordance among fish and BMI was strongest at high conductivity, Early Carboniferous stations. These results suggest that geology plays a strong role in driving abiotic habitats and biotic communities of streams, even at small spatial scales. Furthermore, they suggest BMI and fish can provide complementary information for biomonitoring in shale-gas development areas, with BMI responding to increased ion concentrations from surface water contamination, and fish responding to changes in nutrients and turbidity resulting from development.
- OPEN ACCESS
- R. Drew Carleton,
- Emily Owens,
- Holly Blaquière,
- Stéphane Bourassa,
- Joseph J. Bowden,
- Jean-Noël Candau,
- Ian DeMerchant,
- Sara Edwards,
- Allyson Heustis,
- Patrick M.A. James,
- Alison M. Kanoti,
- Chris J.K. MacQuarrie,
- Véronique Martel,
- Eric R.D. Moise,
- Deepa S. Pureswaran,
- Evan Shanks, and
- Rob C. Johns
Insect outbreaks can cover vast geographic areas making it onerous to cost-effectively monitor populations to address management or ecological questions. Community science (or citizen science), which entails engaging the public to assist with data collection, provides a possible solution to this challenge for the spruce budworm (Choristoneura fumiferana Clemens), a major defoliating pest in North America. Here, we lay out the Budworm Tracker Program, a contributory community science program developed to help monitor spruce budworm moths throughout eastern Canada. The program outsources free pheromone trap kits to volunteers who periodically check and collect moths from their traps throughout the budworm flight period, then return them in a prepaid envelope to the organizers. Over three years, the program engaged an average of 216–375 volunteers and yielded a data return rate of 68%–89%, for a total of 16 311–54 525 moths per year. Volunteer retention among years was 71%–89%. Data from this program offer compelling evidence for the range of long-distance moth dispersal. Although our program was designed for spruce budworm, this template could easily be adapted for forestry, urban forestry, and agricultural systems to monitor any of the numerous organisms for which there is an established trapping method. - OPEN ACCESS
- Kyle A. Schang,
- Andrew J. Trant,
- Sara A. Bohnert,
- Alana M. Closs,
- Megan Humchitt,
- Kelsea P. McIntosh,
- Robert G. Way, and
- Sara B. Wickham
The relationship between Indigenous peoples and the functioning of terrestrial ecosystems has received increased attention in recent years. As a result, it is becoming more critical for researchers focusing on terrestrial ecosystems to work with Indigenous groups to gain a better understanding of how past and current stewardship of these lands may influence results. As a case study to explore these ideas, we systematically reviewed articles from 2008 to 2018 where research was conducted in North America, South America, and Oceania. Of the 159 articles included, 11 included acknowledgement of Indigenous stewardship, acknowledged the Indigenous Territories or lands, or named the Indigenous group on whose Territory the research was conducted. Within the scope of this case study, our results demonstrate an overall lack of Indigenous acknowledgement or consideration within the scope of our review. Given the recent advancements in our understanding of how Indigenous groups have shaped their lands, we implore researchers to consider collaboration among local Indigenous groups as to better cultivate relationships and foster a greater understanding of their ecosystems. - OPEN ACCESSWe report on the results of the first mark–recapture survey of freshwater turtles in an isolated urban wetland complex in one of Canada’s fastest growing municipalities. Although we found turtles in every surveyed wetland, the density and assemblage of turtles in smaller wetlands were significantly different than in larger wetland bodies. We also documented two species of turtles that were thought to be absent from this wetland complex, the Northern Map turtle and Eastern Musk turtle. We noted that a wetland that was bisected by a high-traffic road showed a male-skewed sex ratio in the population of Midland Painted turtles but not in the population of Eastern Snapping turtles. As a whole, the sex ratios inside the wetland complex were not skewed. These results reinforce the conclusions of a previous study of a single wetland within this same complex that had found a correlation between road mortality and a male-skewed sex ratio in Midland painted turtles. We discuss population sources and sinks within the complex and the importance of protecting the overland corridors that support the safe turtle movements within this provincially significant wetland complex.
- OPEN ACCESS
- Amy K. Teffer,
- Jonathan Carr,
- Amy Tabata,
- Angela Schulze,
- Ian Bradbury,
- Denise Deschamps,
- Carole-Anne Gillis,
- Eric B. Brunsdon,
- Gideon Mordecai, and
- Kristina M. Miller
Infectious agents are key components of animal ecology and drivers of host population dynamics. Knowledge of their diversity and transmission in the wild is necessary for the management and conservation of host species like Atlantic salmon (Salmo salar). Although pathogen exchange can occur throughout the salmon life cycle, evidence is lacking to support transmission during population mixing at sea or between farmed and wild salmon due to aquaculture exposure. We tested these hypotheses using a molecular approach that identified infectious agents and transmission potential among sub-adult Atlantic salmon at marine feeding areas and adults in three eastern Canadian rivers with varying aquaculture influence. We used high-throughput qPCR to quantify infection profiles and next generation sequencing to measure genomic variation among viral isolates. We identified 14 agents, including five not yet described as occurring in Eastern Canada. Phylogenetic analysis of piscine orthoreovirus showed homology between isolates from European and North American origin fish at sea, supporting the hypothesis of intercontinental transmission. We found no evidence to support aquaculture influence on wild adult infections, which varied relative to environmental conditions, life stage, and host origin. Our findings identify research opportunities regarding pathogen transmission and biological significance for wild Atlantic salmon populations. - OPEN ACCESS
- OPEN ACCESSWith the widespread loss of biodiversity, zoos and aquariums are striving to become leaders in biodiversity conservation and research. Canada’s Accredited Zoos and Aquariums (CAZA) is a nonprofit organization created to represent its members, including as agencies of conservation and science. However, the contribution of CAZA members to conservation and science has not been quantified. We used research productivity in the form of peer-reviewed publications to systematically quantify biodiversity conservation engagement by CAZA institutions. We extracted publications from the ISI Web of Science database and found that the annual number of publications increased over time. CAZA members published most in the area of veterinary science, with few publications in biodiversity conservation. Organization age, research-orientated mission statements, and financial assets were significant predictors of research productivity. CAZA institutions also published significantly less (X¯ = 12.5 ± 5.52 SE) than members of the Association of Zoos and Aquariums (X¯ = 24.27 ± 5.08 SE), based in the United States. Zoos and aquariums are important resources in mitigating biodiversity loss, and are increasing their research output in this area. Nonetheless, only a small proportion of publications were in biodiversity conservation, and the majority of all publications occurred in zoo-centric journals.
- OPEN ACCESS
- Barry N. Madison,
- Jessie Reynolds,
- Lauren Halliwell,
- Tim Leshuk,
- Frank Gu,
- Kerry M. Peru,
- John V. Headley, and
- Diane M. Orihel
Our study evaluates the efficacy of a “green” (i.e., sustainable, recyclable, and reusable) technology to treat waste waters produced by Canada’s oil sands industry. We examined the ability of a novel advanced oxidative method—ultra-violet photocatalysis over titanium dioxide (TiO2)-coated microparticles—to reduce the toxicity of naphthenic acid fraction components (NAFC) to early life stages of the fathead minnow (Pimephales promelas). Lengthening the duration of photocatalysis resulted in greater removal of NAFC from bioassay exposure waters; low- and high-intensity treatments reduced NAFC concentrations to about 20 and 3 mg/L (by Fourier-transformed infrared spectroscopy, FTIR), respectively. Treatments reduced the acute lethality of NAFC to fathead minnows by over half after low-intensity treatment and three-fold after high-intensity treatment. However, incomplete degradation in low-intensity treatments increased the incidence of chronic toxicity relative to untreated NAFC solutions and cardiovascular abnormalities were common even with >80% of NAFC degraded. Our findings demonstrate that photocatalysis over TiO2 microparticles is a promising method for mitigating the toxicity of oil sands process-affected water-derived NAFC to fish native to the oil sands region, but the intensity of the photocatalytic treatment needs to be considered carefully to ensure adequate mineralization of toxic constituents.