Applied Filters
- Ecology and Evolution
Journal Title
Topics
- Biological and Life Sciences135
- Integrative Sciences40
- Earth and Environmental Sciences32
- Conservation and Sustainability28
- Marine and Aquatic Sciences25
- Zoology23
- Genetics and Genomics11
- Geosciences6
- Biomedical and Health Sciences5
- Plant and Agricultural Sciences5
- Anatomy and Biomechanics4
- Epidemiology4
- Science Communication4
- Microbiology2
- Science and Policy2
- Science and Society2
- Science Education2
- Atmospheric and Climate Sciences1
- Cell and Developmental Biology1
- Ethics1
- Neuroscience1
- Public Health1
Publication Date
Author
- Hall, Britt D6
- Edwards, Sara4
- Davy, Christina M3
- Heard, Stephen B3
- Heustis, Allyson3
- Mallory, Mark L3
- Morris, Douglas W3
- Pureswaran, Deepa S3
- Addison, Jason A2
- Barry, Tegan N2
- Bates, Amanda E2
- Blaquière, Holly2
- Boczulak, Stacy A2
- Bohnert, Sara A2
- Bourassa, Stéphane2
- Bowden, Joseph J2
- Bowman, Jeff2
- Buddle, Christopher M2
- Burles, Douglas W2
- Candau, Jean-Noël2
- Carleton, R Drew2
- Closs, Alana M2
- Coffin, Michael R S2
- Cooke, Steven J2
- Courtenay, Simon C2
Access Type
21 - 40of135
Save this search
Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Filters
Search Name | Searched On |
---|---|
Subject Areas: Ecology and Evolution (135) | 21 Nov 2024 |
You do not have any saved searches
- OPEN ACCESS
- Christina M. Davy,
- Michael E. Donaldson,
- Yessica Rico,
- Cori L. Lausen,
- Kathleen Dogantzis,
- Kyle Ritchie,
- Craig K.R. Willis,
- Douglas W. Burles,
- Thomas S. Jung,
- Scott McBurney,
- Allysia Park,
- Donald F. McAlpine,
- Karen J. Vanderwolf, and
- Christopher J. Kyle
The fungus that causes bat white-nose syndrome (WNS) recently leaped from eastern North America to the Pacific Coast. The pathogen’s spread is associated with the genetic population structure of a host (Myotis lucifugus). To understand the fine-scale neutral and immunogenetic variation among northern populations of M. lucifugus, we sampled 1142 individuals across the species’ northern range. We used genotypes at 11 microsatellite loci to reveal the genetic structure of, and directional gene flow among, populations to predict the likely future spread of the pathogen in the northwest and to estimate effective population size (Ne). We also pyrosequenced the DRB1-like exon 2 of the class II major histocompatibility complex (MHC) in 160 individuals to explore immunogenetic selection by WNS. We identified three major neutral genetic clusters: Eastern, Montane Cordillera (and adjacent sampling areas), and Haida Gwaii, with admixture at intermediate areas and significant substructure west of the prairies. Estimates of Ne were unexpectedly low (289–16 000). Haida Gwaii may provide temporary refuge from WNS, but the western mountain ranges are not barriers to its dispersal in M. lucifugus and are unlikely to slow its spread. Our major histocompatibility complex (MHC) data suggest potential selection by WNS on the MHC, but gene duplication limited the immunogenetic analyses. - OPEN ACCESSCertain compounds of low toxicity can increase the susceptibility of an organism to toxic substances; this is known as potentiation. Demethylation inhibiting (DMI) fungicides can potentiate insecticides by impairing the production of detoxification enzymes. As both DMI fungicides and insecticides can be used near or during crop bloom, the combination may be hazardous if exposed to pollinators. Using pesticides used in blueberry or apple production, we conducted laboratory bioassays to test how combinations of field-relevant concentrations of DMI fungicides and insecticides affected honey bee (Apis mellifera) survival. We found propiconazole, a DMI fungicide, potentiated the toxicity of the neonicotinoid insecticide acetamiprid. We found no evidence of propiconazole potentiating field-relevant concentrations of the spinosyn insecticide spinetoram. We also found that the DMI fungicide flusilazole potentiated spinetoram but not acetamiprid. A fungicidal formulation combining pyraclostrobin and boscalid did not potentiate either insecticide. Given that bees can be simultaneously exposed to multiple pesticides, understanding the potential of pesticide potentiation and synergism may help mitigate risks associated with pollinator exposure to pesticides.
- OPEN ACCESS
- Julia J. Mlynarek,
- Chandra E. Moffat,
- Sara Edwards,
- Anthony L. Einfeldt,
- Allyson Heustis,
- Rob Johns,
- Mallory MacDonnell,
- Deepa S. Pureswaran,
- Dan T. Quiring,
- Zoryana Shibel, and
- Stephen B. Heard
Many populations are thought to be regulated, in part, by their natural enemies. If so, disruption of this regulation should allow rapid population growth. Such “enemy escape” may occur in a variety of circumstances, including invasion, natural range expansion, range edges, suppression of enemy populations, host shifting, phenological changes, and defensive innovation. Periods of relaxed enemy pressure also occur in, and may drive, population oscillations and outbreaks. We draw attention to similarities among circumstances of enemy escape and build a general conceptual framework for the phenomenon. Although these circumstances share common mechanisms and depend on common assumptions, enemy escape can involve dynamics operating on very different temporal and spatial scales. In particular, the duration of enemy escape is rarely considered but will likely vary among circumstances. Enemy escape can have important evolutionary consequences including increasing competitive ability, spurring diversification, or triggering enemy counteradaptation. These evolutionary consequences have been considered for plant–herbivore interactions and invasions but largely neglected for other circumstances of enemy escape. We aim to unite the fragmented literature, which we argue has impeded progress in building a broader understanding of the eco-evolutionary dynamics of enemy escape. - OPEN ACCESS
- Michael R.S. Coffin,
- Simon C. Courtenay,
- Kyle M. Knysh,
- Christina C. Pater, and
- Michael R. van den Heuvel
In this study, we examined the effects of dissolved oxygen, via metrics based on hourly measurements, and other environmental variables on invertebrate assemblages in estuaries spanning a gradient of nutrient loading and geography in the southern Gulf of St. Lawrence, Canada. Upper areas (15–25 practical salinity units (PSU)) of 13 estuaries that were dominated by either seagrass (Zostera marina Linnaeus, 1753) or macroalgae (Ulva spp. Linnaeus, 1753) were sampled from June to September 2013. Macroinvertebrate assemblages from Z. marina were found to be distinct from Ulva assemblages for both epifauna and infauna. Small snails dominated each vegetation type, specifically cerithids in Z. marina and hydrobids in Ulva. Although Z. marina had higher species richness, approximately 70% of species were common to both habitats. Faunal communities differed among estuaries with large, within-estuary, temporal variance only observed at Ulva sites impacted by hypoxia and particularly at sites with long water residence time. Indeed, abundances varied by several orders of magnitude in Ulva ranging from zero to thousands of macroinvertebrates. There was a strong negative correlation between hypoxic or anoxic water, 48 h prior to sampling, with relative abundances of amphipods, and a positive correlation with the relative abundances of snails. As one of the first studies to use high-frequency oxygen monitoring, this study revealed probable impacts and the transient nature of hypoxia in eutrophication. - OPEN ACCESS
- Emily M. Merlo,
- Kathryn A. Milligan,
- Nola B. Sheets,
- Christopher J. Neufeld,
- Tao M. Eastham,
- A.L. Ka’ala Estores-Pacheco,
- Dirk Steinke,
- Paul D.N. Hebert,
- Ángel Valdés, and
- Russell C. Wyeth
The mollusc nudibranch genus Hermissenda Bergh, 1879 was recently discovered to include three pseudocryptic species, dividing a single species H. crassicornis (sensu lato) into H. crassicornis Escholtz, 1831, H. opalescens J.G. Cooper, 1863, and H. emurai Baba, 1937. The species were distinguished by both genetic and morphological evidence, and the distribution of sampled animals suggested the three species had mostly distinct geographical ranges. Here, we report the presence of both H. crassicornis and H. opalescens in Barkley and Clayoquot Sounds, British Columbia, Canada, based on diagnostic characters and molecular data congruent with the differences described for these two species. This result extends the region of sympatry for the two species from northern California, USA, to, at least, Vancouver Island, British Columbia in 2016. Depending on how long this overlap has occurred, the possible northward expansion of H. opalescens would have implications for understanding the effects of short- or long-term environmental changes in ocean temperatures as well as complicating the interpretation of past neurobiological studies of H. crassicornis (sensu lato). - OPEN ACCESSAnkylosaurus magniventris is an iconic dinosaur species often depicted in popular media. It is known from relatively fragmentary remains compared with its earlier and smaller relatives such as Euoplocephalus and Anodontosaurus. Nevertheless, the known fossils of Ankylosaurus indicate that it had diverged significantly in cranial and postcranial anatomy compared with other Laramidian ankylosaurines. In particular, the dentition, narial region, tail club, and overall body size differ substantially from other Campanian–Maastrichtian ankylosaurines. We review the anatomy of this unusual ankylosaur using data from historic and newly identified material and discuss its palaeoecological implications.
- OPEN ACCESSRecently, the use of small-bodied fish in environmental monitoring has increased, particularly within the Canadian environmental effects monitoring (EEM) and other adaptive programs. Although it is possible to measure changes with many small-bodied species, interpretation is often complicated by the absence of information on the biology and ecology of fish not of commercial, recreational, or traditional interest. Knowing and understanding the basic biology of these fishes aids in the sensitivity of study designs (i.e., ability to detect change) and the interpretation of all biological levels of responses (e.g., cellular to community). The increased use of slimy sculpin (Cottus cognatus Richardson, 1836) in impact assessment studies in North America provides a considerable amount of information on life history aspects. The slimy sculpin has the most ubiquitous North American distribution among cottids but yet has a very small home range, thus integrating environmental conditions of localized areas. This paper describes aspects of slimy sculpin life cycle that affect collection efficiency and timing, and describes and provides data collected over more than 10 years of studies at more than 20 reference study sites. This overview provides a functional and informative compilation to support adaptive environmental monitoring and provide a baseline for comparative ecological study.
- OPEN ACCESSDistinguishing between intra- and inter-specific variation in genetic studies is critical to understanding evolution because the mechanisms driving change among populations are expected to be different than those that shape reproductive isolation among lineages. Genetic studies of north Atlantic green sea urchins Strongylocentrotus droebachiensis (Müller, 1776) have detected significant population substructure and asymmetric gene flow from Europe to Atlantic Canada and interspecific hybridization between S. droebachiensis and Strongylocentrotus pallidus (Sars, 1871). However, combined with patterns of divergence at mtDNA sequences, morphological divergence at gamete traits suggests that the European and North American lineages of S. droebachiensis may be cryptic species. Here, we use a combination of cytochrome c oxidase subunit I (COI) sequences and single nucleotide polymorphisms (SNPs) to test for cryptic species within Strongylocentrotus sea urchins and hybrids between S. droebachiensis and S. pallidus populations. We detect striking patterns of habitat and reproductive isolation between two S. droebachiensis lineages, with offshore deep-water collections consisting of S. pallidus in addition to a cryptic lineage sharing genetic similarity with previously published sequences from eastern Atlantic S. droebachiensis. We detected only limited hybridization among all three lineages of sea urchins, suggesting that shared genetic differences previously reported may be a result of historical introgression or incomplete lineage sorting.
- OPEN ACCESSMercury (Hg) in wildlife remains of great concern, especially for apex piscivores. Despite this, exposure information from many species in many areas is lacking, so that management decisions are hampered. Here we examine Hg concentrations in fur, liver, and kidney tissues from river otters (Lontra canadensis (Schreber, 1777)) (n = 203) to quantify existing Hg concentrations over a broad geographic area in Saskatchewan. Mean fur total Hg (THg) (9.68 ± 7.52 mg/kg fresh weight (f.w.)) was significantly correlated with THg and organic Hg (OHg) in liver and kidney tissue, showcasing the potential for using fur as a noninvasive method of monitoring Hg in top-level mammals. Livers of males had higher mean OHg concentrations than livers of females (males: 2.71 mg/kg d.w., females: 1.87 mg/kg d.w.), but not significantly so. No sex-related differences were observed in kidney OHg concentrations. THg concentrations in otter fur collected in the Boreal Shield ecozone (Churchill River Upland) were significantly higher (mean = 16.1 mg/kg f.w.) than in otter fur collected from the Boreal Plain ecozone (mean = 8.59 mg/kg f.w.). Fur from otters (n = 20; trapping block N66) trapped near a decommissioned smelter contained the highest concentrations of THg in the study (mean = 18.4 mg/kg f.w.).
- OPEN ACCESSThe Prairie Pothole Region (PPR) in the northern Great Plains is an area of ecological significance, serving as an important breeding site for avian wildlife. However, organisms feeding within the PPR may be at risk of mercury (Hg) exposure due to deposition of anthropogenic emissions and the high Hg methylation potential of PPR wetlands. We quantified Hg concentrations in red-winged blackbirds’ (Agelaius phoeniceus (Linnaeus, 1766); RWBLs) blood, feathers, and eggs in the spring and summer breeding season and compared our values with those from RWBLs sampled from ecoregions across North America. Hg concentrations in whole water, aeshnid dragonfly nymphs, and RWBL tissues varied by wetland and were below those considered to elicit acute effects in wildlife, and egg total Hg (THg) concentrations were significantly related to spring whole water methylmercury concentrations. Only RWBL blood THg concentrations showed a clear increase in summer compared with spring, resulting in decoupling of summer blood and feather THg concentrations. Moreover, blood THg concentrations varied by ecoregion, with those impacted by an industrial point source exhibiting high Hg levels. Our study emphasizes that tissue renewal time as well as ecological factors such as competition and diet shifts are important considerations when using RWBLs to assess biological Hg exposure.
- OPEN ACCESS
- OPEN ACCESSHoney bees (Apis mellifera Linnaeus, 1758) potentially rely on a variety of visual cues when searching for flowers in the environment. Both chromatic and achromatic (brightness) components of flower signals have typically been considered simultaneously to understand how flower colours have evolved. However, it is unclear whether honey bees actually use brightness information in their colour perception. We investigated whether free-flying honey bees can process brightness cues in achromatic stimuli when presented at a large visual angle of 28° to ensure colour processing. We found that green contrast (modulation of the green receptor against the background) and brightness contrast (modulation of all three receptors against the background) did not have a significant effect on the proportion of correct choices made by bees, indicating that they did not appear to use brightness cues in a colour processing context. Our findings also reveal that, even at a small visual angle, honeybees do not reliably process single targets solely based on achromatic information, at least considering values up to 60% modulation of brightness. We discuss these findings in relation to proposed models of bee colour processing. Therefore, caution should be taken when interpreting elemental components of complex flower colours as perceived by different animals.
- OPEN ACCESSThreespine stickleback (Gasterosteus aculeatus Linnaeus, 1758) exhibit a well-documented reduction in plate number associated with adaptation to freshwater environments. We tested the hypothesis that changes in plate number are accompanied by changes in plate bone mineral density and plate shape, reflecting the presence of a complex plate “armour” phenotype and a complex adaptive response to different selective pressures in changing habitats. We used traditional and novel morphometric techniques to characterize armour traits from stickleback occupying three marine habitats and one tidally influenced freshwater stream in southwestern British Columbia. Stickleback inhabiting marine environments share a conserved plate phenotype that includes a full complement of highly mineralized plates that exhibit a characteristic density profile along the plate. Stickleback inhabiting tidally influenced fresh water display an average reduction in plate number along with increased variation in number and reduced total mineralization despite maintenance of a marine-like density profile. Further, we found that although mineralization and armour shape are correlated with size, after accounting for size variation in both traits remains attributable to habitat. Our results hint at an important role for development in structuring phenotypic variation during the process of adaptive change in stickleback.
- OPEN ACCESS
- Julio Mercader,
- Tolutope Akeju,
- Melisa Brown,
- Mariam Bundala,
- Matthew J. Collins,
- Les Copeland,
- Alison Crowther,
- Peter Dunfield,
- Amanda Henry,
- Jamie Inwood,
- Makarius Itambu,
- Joong-Jae Kim,
- Steve Larter,
- Laura Longo,
- Thomas Oldenburg,
- Robert Patalano,
- Ramaswami Sammynaiken,
- María Soto,
- Robert Tyler, and
- Hermine Xhauflair
Ancient starch research illuminates aspects of human ecology and economic botany that drove human evolution and cultural complexity over time, with a special emphasis on past technology, diet, health, and adaptation to changing environments and socio-economic systems. However, lapses in prevailing starch research demonstrate the exaggerated expectations for the field that have been generated over the last few decades. This includes an absence of explanation for the millennial-scale survivability of a biochemically degradable polymer, and difficulties in establishing authenticity and taxonomic identification. This paper outlines new taphonomic and authenticity criteria to guide future work toward designing research programs that fully exploit the potential of ancient starch while considering growing demands from readers, editors, and reviewers that look for objective compositional identification of putatively ancient starch granules. - OPEN ACCESSWe examined how Arctic spider (Araneae) biodiversity is distributed at multiple spatial scales in northern Canada using a standardized hierarchical sampling design. We investigated which drivers, environmental or spatial, influence the patterns observed. Spatial patterns of Arctic spider species richness and composition were assessed in 12 sites located in arctic, subarctic, and north boreal ecoclimatic regions, spanning 30 degrees of latitude and 80 degrees of longitude. Variation in diversity was partitioned in relation to multiple environmental and spatial drivers of diversity patterns. Over 23 000 adult spiders, representing 306 species in 14 families, were collected in northern Canada, with 107 species (35% of the total species collected) representing new territorial or provincial records. Spider diversity was structured at the regional scale across ecoclimatic regions but was not structured with latitude. Longitudinal patterns of spider diversity across Canada may be explained by post-glacial dispersal. At local scales, diversity was non-randomly distributed and possibly limited by biotic interactions. We recommend the use of ecoclimatic regions as a framework for conservation of biodiversity in northern Canada and spiders as useful bioindicators that can help us understand the effects of climate change across ecoclimatic regions of northern Canada.
- OPEN ACCESSMercury (Hg) and polycyclic aromatic hydrocarbons (PAHs) are global pollutants known for their toxicity to wildlife. Because of their trophic position, common loons (Gavia immer (Brünnich 1764)) are excellent indicators of environmental quality. In 2014 and 2015, tissue samples of ten adult common loons (plus one recapture) were obtained in Meadow Lake Provincial Park, Saskatchewan, and assessed for Hg and PAH exposure. Blood and feather levels of these contaminants are indicative of exposure during breeding and in wintering areas, respectively. Compared with an international Hg database, blood Hg levels were low (<1 μg/g). In most loons (90.5%, 10 out of 11), blood PAH concentrations were also low (<10 ng/g), but high (120 ng/g) for one individual (9.5% 1 out of 11). Feather PAH concentrations were high (95.9 ng/g and 250.6 ng/g) in two of the four loons (50%) caught in 2015. These data indicate that loons breeding in Meadow Lake Provincial Park were exposed to low levels of Hg; however, some individuals are being exposed to PAHs in both their breeding and wintering locations. The effect of these environmental pollutants on individual loon fitness is unclear, but because of their extreme toxicity in biological systems we suggest that future monitoring in the surrounding region is warranted.
- OPEN ACCESSMonarch butterflies (Danaus plexippus, Linnaeus, 1758) are comprised of two migratory populations separated by the Rocky Mountains and are renowned for their long-distance movements among the United States, Canada, and Mexico. Both populations have declined over several decades across North America prompting all three countries to evaluate conservation efforts. Monitoring monarch distribution and abundance is a necessary aspect of ongoing management in Canada where they are a species at risk. We used presence-only data from two citizen science data sets to estimate the annual breeding distribution of monarch butterflies in Canada between 2000 and 2015. Monarch breeding distribution in Canada varied widely among years owing to natural variation, and when considering the upper 95% of the probability of occurrence, the annual mean breeding distribution in Canada was 484 943 km2 (min: 173 449 km2; max: 1 425 835 km2). The area of occurrence was approximately an order of magnitude larger in eastern Canada than in western Canada. Habitat restoration for monarch butterflies in Canada should prioritize productive habitats in southern Ontario where monarchs occur annually and, therefore, likely contribute most to the long-term viability of monarchs in eastern North America. Overall, our assessment sets the geographic context to develop successful management strategies for monarchs in Canada.
- OPEN ACCESS
- OPEN ACCESSThe salmon louse Lepeophtheirus salmonis (Krøyer 1837) displays numerous sexually dimorphic characteristics. Insights into their underlying molecular components have only recently been explored, which serve to better understand both the basic biology of the louse, associated impacts on drug sensitivity, and evolution of resistance. Expression of 16 L. salmonis genes putatively involved in sexual dimorphism and reproduction were used to determine differences between sexes and better understand responses to mating using RT-qPCR of pre-adult and adult lice. Analysis of these genes revealed the dynamic nature of sex-biased expression across stages. However, female reception of a spermatophore did not appear to impact the expression of these particular genes. Furthermore six of these transcripts and 84 others identified previously in a large-scale louse transcriptomics experiment were used to estimate differences in evolutionary rates and codon-usage bias of sex-related genes using phylogenetic analysis by maximum likelihood (PAML) and codonW. Results suggest male-biased genes are evolving at significantly greater rates than female-biased and unbiased genes as evidenced by higher rates of non-synonymous substitutions and lower codon-usage bias in these genes. These analyses expand our understanding of interactions of sex-biased expression across the pre-adult and adult life stages and provide foundations for better understanding evolutionary differences in sex-biased genes of L. salmonis.
- OPEN ACCESS
Age matters: Submersion period shapes community composition of lake biofilms under glyphosate stress
The phosphonate herbicide glyphosate, which is the active ingredient in the commercial formulation Roundup®, is currently the most globally used herbicide. In aquatic ecosystems, periphytic biofilms, or periphyton, are at the base of food webs and are often the first communities to be in direct contact with runoff. Microcosm experiments were conducted to assess the effects of a pulse exposure of glyphosate on community composition and chlorophyll a concentrations of lake biofilms at different colonization stages (2 months, 1 year, and 20 years). This is the first study that uses such contrasting submersion periods. Biofilms were exposed to either environmental levels of pure analytical grade glyphosate (6 μg/L, 65 μg/L, and 600 μg/L) or to corresponding phosphorus concentrations. Community composition was determined by deep sequencing of the 18S and 16S rRNA genes to target eukaryotes and cyanobacteria, respectively. The results showed that submersion period was the only significant contributor to community structure. However, at the taxon level, the potentially toxic genus Anabaena was found to increase in relative abundance. We also observed that glyphosate releases phosphorus into the surrounding water, but not in a bioavailable form. The results of this study indicate that environmental concentrations of glyphosate do not seem to impact the community composition or metabolism of lake biofilms under pulse event conditions.