Applied Filters
- Biological and Life Sciences
- Earth and Environmental SciencesRemove filter
Journal Title
Topics
Publication Date
Author
- Hall, Britt D4
- Orihel, Diane M3
- Boczulak, Stacy A2
- Coffin, Michael R S2
- Courtenay, Simon C2
- Headley, John V2
- Knysh, Kyle M2
- Pater, Christina C2
- Schiff, Sherry L2
- Sutherland, Ben J G2
- van den Heuvel, Michael R2
- Venkiteswaran, Jason J2
- Addison, Jason A1
- Akeju, Tolutope1
- Amyot, Marc1
- Balliston, Nicole1
- Ban, Natalie C1
- Ban, Stephen1
- Barbeau, Myriam A1
- Barclay, Kristina M1
- Barreto, Carlos1
- Barton, Martha1
- Bates, Lara M1
- Baulch, Helen M1
- Baulier, Loïc1
Access Type
1 - 20of44
Save this search
Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Filters
You do not have any saved searches
- OPEN ACCESSTotal Zn concentrations and Zn isotope ratios were measured, using multicollector inductively coupled plasma (ICP)-mass spectrometry (MS), in three species of aquatic insects collected from a stream in Peterborough, Ontario, Canada. Total Zn levels averaged 193 ± 88 μg/g dry weight (dw) in water striders (Heteroptera: Gerridae, Aquarius remigis) and were significantly higher than the concentrations measured in stonefly nymphs (Plecoptera: Perlidae, Acroneuria abnormis) and caddisfly larvae (Trichoptera: Limnephilidae, Pycnopsyche guttifer), i.e., 136 ± 34 μg/g dw and 125 ± 26 μg/g dw, respectively. Average delta values for 66Zn/64Zn in the water striders were approximately 0.7‰ lighter (−1.2‰ ± 1.0‰) and were significantly different than those measured for stoneflies (−0.45‰ ± 0.62‰) and caddisflies (−0.51‰ ± 0.54‰). Nitrogen isotope ratios were significantly different (P < 0.05) among the three species suggesting differences in trophic positioning. Similar to the Zn isotope ratios, δ 13C values for the water striders (−28.61‰ ± 0.98‰) were significantly different than those of the stoneflies and caddisflies, i.e., −30.75‰ ± 1.33‰ and −30.68‰ ± 1.01‰, respectively. The data suggest that the differences observed in Zn ratios relate to food source for these insects. Similar to their carbon sources, Zn in water striders appears to be primarily of terrestrial origin, and of aquatic origin for the other two species.
- OPEN ACCESSWith increasing input of neurotoxic mercury to environments as a result of anthropogenic activity, it has become imperative to examine how mercury may enter biotic systems through its methylation to bioavailable forms in aquatic environments. Recent development of stable isotope-based methods in methylation studies has enabled a better understanding of the factors controlling methylation in aquatic systems. In addition, the identification and tracking of the hgcAB gene cluster, which is necessary for methylation, has broadened the range of known methylators and methylation-conducive environments. Study of abiotic factors in methylation with new molecular methods (the use of stable isotopes and genomic methods) has helped elucidate the confounding influences of many environmental factors, as these methods enable the examination of their direct effects instead of merely correlative observations. Such developments will be helpful in the finer characterization of mercury biogeochemical cycles, which will enable better predictions of the potential effects of climate change on mercury methylation in aquatic systems and, by extension, the threat this may pose to biota.
- OPEN ACCESSTadpoles are important prey items for many aquatic organisms and often represent the largest vertebrate biomass in many fishless wetland ecosystems. Neurotoxic mercury (Hg) can, at elevated levels, decrease growth, lower survival, and cause developmental instability in amphibians. We compared total Hg (THg) body burden and concentration in boreal chorus frog (Pseudacris maculata) and wood frog (Rana sylvatica) tadpoles. Overall, body burden and concentration were lower in boreal chorus frog tadpoles than wood frog tadpoles, as expected, because boreal chorus frog tadpoles consume at lower trophic levels. The variables species, stage, and mass explained 21% of total variation for body burden in our models but had negligible predictive ability for THg concentration. The vast majority of the remaining variation in both body burden and THg concentration was attributable to differences among ponds; tadpoles from ponds in three areas had considerably higher THg body burden and concentration. The pond-to-pond differences were not related to any water chemistry or physical parameter measured, and we assumed that differences in wetland geomorphology likely played an important role in determining Hg levels in tadpoles. This is the first report of Hg in frog tadpoles in the Prairie Pothole Region of North America.
- OPEN ACCESSOceanic circulation patterns shape both the distribution of species and spatial patterns of intraspecific genetic variation by influencing passively dispersed marine invertebrates. In the northwest Atlantic, strong and consistent currents at the mouth of the Bay of Fundy are expected to restrict dispersal in this region, but the relationship between populations of high dispersal species along the surrounding coastal regions has been largely underrepresented in the phylogeographic literature. We analyzed phylogeographic patterns in two intertidal invertebrates with high dispersal abilities, Tritia obsoleta (Mollusca: Gastropoda) and Macoma petalum (Mollusca: Bivalvia), between Cape Cod and the Gulf of St. Lawrence using mitochondrial DNA (mtDNA). Hierarchical analysis of molecular variance revealed population structuring among regions defined by circulation patterns, highly divergent lineages within M. petalum, and strong concordant genetic subdivision in both species between the Bay of Fundy and Gulf of Maine. Our results suggest that the gyre at the mouth of the bay is influential in restricting alongshore dispersal, allowing genetic divergence between regions to arise through genetic drift. These findings are concordant with biogeographic and phylogeographic studies of other marine organisms, suggesting that the genetic isolation of widely distributed species may be a common feature of intertidal invertebrate communities in the Bay of Fundy.
- OPEN ACCESSMicroplastic pollution is prevalent in the Ottawa River, with all open water samples (n = 62) and sediment samples (n = 10) containing microplastics. The median microplastic concentration of nearshore 100 L water samples was 0.1 fragments per L (ranged between 0.05 and 0.24 fragments per L). The larger volume Manta trawls samples taken in the middle of the Ottawa River had an overall mean concentration of plastics of 1.35 fragments per m3. Plastic concentrations were significantly higher downstream of the wastewater treatment plant (1.99 fragments per m3) compared with upstream of the effluent output (0.71 fragments per m3), suggesting that the effluent plume is a pathway for plastic pollution to the Ottawa River. The mean concentration of microplastic fragments recovered in the sediment samples was 0.22 fragments per g dry weight. The abundance of microplastics in the sediment was not significantly related to the mean particle size or the organic content of the sediment. The most common form of plastic particles found was microfibers. These made up between 70% and 100% of all plastic particles observed, although plastic microbeads and secondary plastic fragments were also recovered.
- OPEN ACCESSOrnithomimid material from the Belly River Group (Campanian) of Alberta, Canada is described as sharing characters with Qiupalong henanensis from the Qiupa Formation of Henan Province, China. Derived characters and character combinations of the pubis and astragalocalcaneum were previously used to diagnose Q. henanensis and support the referral of this material to Qiupalong sp., representing the first known occurrences of Qiupalong outside of China. Qiupalong is the sixth ornithomimid taxon to be reported from the Dinosaur Park Formation and the first ornithomimid genus with a transcontinental distribution. The Alberta material represents the oldest known occurrences of Qiupalong, and a reconsideration of character evidence suggests that this genus is phylogenetically nested within other North American ornithomimids. A North American origin for Qiupalong and subsequent dispersal to Asia is proposed.
- OPEN ACCESSLife history theory predicts selection for higher reproductive investment in response to increased mortality among mature individuals. We tested this prediction over the period from 1978 to 2013 for three populations of Atlantic cod (Gadus morhua) off Newfoundland. These populations were heavily fished for a long period. We considered changes in standardized gonad weight as a proxy for changes in gonadal investment. We accounted for the allometry between gonad and body weight, individual body condition, water temperature, and potential spatial and density-dependent effects. Males display significant temporal trends in gonadal investment in all populations; in agreement with theoretical predictions, these trends show increased gonadal investments during the earlier part of the time series when mortality was high, with the trends leveling off or reversing after the later imposition of fishing moratoria. In contrast, females display patterns that are less consistent and expected; significant trends are detected only when accounting for density-dependent effects, with females in two populations unexpectedly showing a long-term decline in gonadal investment. Our results support the hypothesis that fisheries-induced evolution has occurred in gonadal investment in males, but not in females, and suggest that gonadal investment is more important for male reproductive success than expected in this lekking species.
- OPEN ACCESSMicroplastics are defined as any plastic with a diameter ≤5 mm. Problems associated with these plastics such as contamination of both marine and freshwater environments and ingestion by aquatic organisms are of increasing concern. Our study quantifies the number of microplastics in a prairie creek immediately downstream of Regina, Saskatchewan, Canada. Water samples and five species of fish were collected from sample sites upstream and downstream of a wastewater treatment plant (WWTP) in the summers of 2015 and 2016. Samples were digested in either a Fe(II)/H2O2 or NaClO solution and observed under a microscope where plastics present were enumerated by colour and type. At least one microplastic was detected in 73.5% of fish and 95.6% of water samples, showing that the creek does, in fact, contain microplastics. Concentrations were higher in water from upstream sites, likely due to dilution of creek water by the release of treated effluent. The results of this study provide baseline conditions for the presence of plastics in the creek prior to a major upgrade of the WWTP scheduled for completion in 2016.
- OPEN ACCESS
- Ben J.G. Sutherland,
- Jennifer M. Covello,
- Sarah E. Friend,
- Jordan D. Poley,
- Kim W. Koczka,
- Sara L. Purcell,
- Tara L. MacLeod,
- Bridget R. Donovan,
- Jorge Pino,
- Jose Luis González-Vecino,
- Javier Gonzalez,
- Jose Troncoso,
- Ben F. Koop,
- Simon L. Wadsworth, and
- Mark D. Fast
Salmon lice (Lepeophtheirus salmonis) are important ectoparasites of wild and farmed salmonids and cause major losses to the salmon farming industry throughout the Northern Hemisphere. With the emergence of resistance to several commonly used parasiticides, novel control strategies and integration of multiple treatment options are needed, including host immunostimulation. Here, we investigate the effects of a functional feed containing a peptidoglycan and nucleotide formulation on L. salmonis infection of Atlantic salmon (Salmo salar) by characterizing lice infection levels, the expression of several host immune genes, and the parasite transcriptomic response to the immunostimulated host. Although initial infection intensities were low, the low dose (LD) immunostimulant diet reduced the total lice burden by 50% relative to controls. Immunostimulant fed hosts up-regulated interleukin-1β in the skin and spleen. This gene has been implicated in successful responses of several salmonid species to salmon lice but is typically not observed in Atlantic salmon, suggesting a favorable influence on the immune response. Lice infecting LD immunostimulated salmon overexpressed genes putatively involved in parasite immunity, including carboxylesterases, and underexpressed genes putatively involved in feeding (e.g., proteases). These lice response genes further improve the characterization of the transcriptome of the non-model parasite by identifying genes potentially involved in evading host immunity. - OPEN ACCESS
- Michael R.S. Coffin,
- Simon C. Courtenay,
- Kyle M. Knysh,
- Christina C. Pater, and
- Michael R. van den Heuvel
In this study, we examined the effects of dissolved oxygen, via metrics based on hourly measurements, and other environmental variables on invertebrate assemblages in estuaries spanning a gradient of nutrient loading and geography in the southern Gulf of St. Lawrence, Canada. Upper areas (15–25 practical salinity units (PSU)) of 13 estuaries that were dominated by either seagrass (Zostera marina Linnaeus, 1753) or macroalgae (Ulva spp. Linnaeus, 1753) were sampled from June to September 2013. Macroinvertebrate assemblages from Z. marina were found to be distinct from Ulva assemblages for both epifauna and infauna. Small snails dominated each vegetation type, specifically cerithids in Z. marina and hydrobids in Ulva. Although Z. marina had higher species richness, approximately 70% of species were common to both habitats. Faunal communities differed among estuaries with large, within-estuary, temporal variance only observed at Ulva sites impacted by hypoxia and particularly at sites with long water residence time. Indeed, abundances varied by several orders of magnitude in Ulva ranging from zero to thousands of macroinvertebrates. There was a strong negative correlation between hypoxic or anoxic water, 48 h prior to sampling, with relative abundances of amphipods, and a positive correlation with the relative abundances of snails. As one of the first studies to use high-frequency oxygen monitoring, this study revealed probable impacts and the transient nature of hypoxia in eutrophication. - OPEN ACCESS
- Julio Mercader,
- Tolutope Akeju,
- Melisa Brown,
- Mariam Bundala,
- Matthew J. Collins,
- Les Copeland,
- Alison Crowther,
- Peter Dunfield,
- Amanda Henry,
- Jamie Inwood,
- Makarius Itambu,
- Joong-Jae Kim,
- Steve Larter,
- Laura Longo,
- Thomas Oldenburg,
- Robert Patalano,
- Ramaswami Sammynaiken,
- María Soto,
- Robert Tyler, and
- Hermine Xhauflair
Ancient starch research illuminates aspects of human ecology and economic botany that drove human evolution and cultural complexity over time, with a special emphasis on past technology, diet, health, and adaptation to changing environments and socio-economic systems. However, lapses in prevailing starch research demonstrate the exaggerated expectations for the field that have been generated over the last few decades. This includes an absence of explanation for the millennial-scale survivability of a biochemically degradable polymer, and difficulties in establishing authenticity and taxonomic identification. This paper outlines new taphonomic and authenticity criteria to guide future work toward designing research programs that fully exploit the potential of ancient starch while considering growing demands from readers, editors, and reviewers that look for objective compositional identification of putatively ancient starch granules. - OPEN ACCESSMercury (Hg) is a global pollutant emitted primarily as gaseous Hg0 that is deposited in aquatic and terrestrial ecosystems following its oxidation to HgII. From that point, microbes play a key role in determining Hg’s fate in the environment by participating in sequestration, oxidation, reduction, and methylation reactions. A wide diversity of chemotrophic and phototrophic microbes occupying oxic and anoxic habitats are known to participate directly in Hg cycling. Over the last few years, new findings have come to light that have greatly improved our mechanistic understanding of microbe-mediated Hg cycling pathways in the environment. In this review, we summarize recent advances in microbially mediated Hg cycling and take the opportunity to compare the relatively well-studied chemotrophic pathways to poorly understood phototrophic pathways. We present how the use of genomic and analytical tools can be used to understand Hg transformations and the physiological context of recently discovered cometabolic Hg transformations supported in anaerobes and phototrophs. Finally, we propose a conceptual framework that emphasizes the role that phototrophs play in environmental Hg redox cycling and the importance of better characterizing such pathways in the face of the environmental changes currently underway.
- OPEN ACCESS
Age matters: Submersion period shapes community composition of lake biofilms under glyphosate stress
The phosphonate herbicide glyphosate, which is the active ingredient in the commercial formulation Roundup®, is currently the most globally used herbicide. In aquatic ecosystems, periphytic biofilms, or periphyton, are at the base of food webs and are often the first communities to be in direct contact with runoff. Microcosm experiments were conducted to assess the effects of a pulse exposure of glyphosate on community composition and chlorophyll a concentrations of lake biofilms at different colonization stages (2 months, 1 year, and 20 years). This is the first study that uses such contrasting submersion periods. Biofilms were exposed to either environmental levels of pure analytical grade glyphosate (6 μg/L, 65 μg/L, and 600 μg/L) or to corresponding phosphorus concentrations. Community composition was determined by deep sequencing of the 18S and 16S rRNA genes to target eukaryotes and cyanobacteria, respectively. The results showed that submersion period was the only significant contributor to community structure. However, at the taxon level, the potentially toxic genus Anabaena was found to increase in relative abundance. We also observed that glyphosate releases phosphorus into the surrounding water, but not in a bioavailable form. The results of this study indicate that environmental concentrations of glyphosate do not seem to impact the community composition or metabolism of lake biofilms under pulse event conditions. - OPEN ACCESSWe examined the physical and geochemical effects of sediment on the uptake of polybrominated diphenyl ethers (PBDEs) into marine sediment feeders and their transfer to higher trophic fauna. Sediment PBDEs increased with % total organic carbon (%TOC), organic carbon (OC) flux and grain size (%fines). Tissue PBDE variance was best explained (R2 = 0.70) by sediment acid volatile sulfides (AVS), PBDEs, and organic lability and input, with the highest values near wastewater outfalls. Dry weight tissue/sediment PBDEs declined with increasing sediment PBDEs, resulting in tissue dilution (ratio <1) at >10 000 pg/g in harbours. Ratios also decreased with increasing %fines, resulting in regional differences. These patterns imply that high levels of fines and high sediment concentrations make PBDEs less bioavailable.Dry weight PBDEs increased >100× between background deposit feeders and predators (polychaetes, crabs, bottom fish, seal), but lipid normalized PBDEs barely increased (<1.3%), suggesting remarkably high uptake in low-lipid sediment feeders, and that PBDEs don’t accumulate at higher trophic levels, but lipid content does. Filter feeders had lower lipid-normalized PBDEs than deposit feeders, highlighting the importance of food resources in higher trophic fauna for bioaccumulation.The most profound congener change occurred with sediment uptake, with nona/deca-BDEs declining and tetra-hexa-BDEs increasing. Harbour sediment feeders had more deca-BDEs than other samples, suggesting PBDEs mostly pass unmodifed through them. Deca-BDEs persist patchily in all tissues, reflecting variable dependence on sediment/pelagic food.
- OPEN ACCESSWe used moored 75 kHz acoustic Doppler current profilers (ADCPs) to examine seasonal cycles in zooplankton deep scattering layers (DSLs) observed below 1300 m depth at Endeavour Ridge hydrothermal vents. DSLs are present year-round in the lower water column near vent plumes. Temporal variations suggest passive, flow-induced displacements superimposed on migratory movements. Although the strongest DSLs are shallower than the neutrally buoyant plumes (1900–2100 m), anomalies also occur at and below plume depth. Upward movement from plume depth in the main DSL is evident in late summer/fall, resulting in shallower DSLs in winter, consistent with the timing of adult diapause/reproduction in upper-ocean migratory copepods. Movement from the upper ocean to plume depth coincides with pre-adult migration to greater depths in spring. Synchronous 20–40 d cycles in DSLs may account for patchiness in space and time of above-plume zooplankton layers observed in summer during previous net-sampling surveys, and suggests lateral and vertical migratory movements to counter current drift away from plume-derived food sources. Persistent near-bottom DSLs move vertically between the spreading plume and seafloor. Historical net data suggests that these are deep, resident fauna. Unlike upper ocean fauna, they seem to be advected considerable distances from the ridge axis, where they are evident as remnant scattering layers.
- OPEN ACCESSAddition of nutrients, such as nitrogen, can degrade water quality in lakes, rivers, and estuaries. To predict the fate of nutrient inputs, an understanding of the biogeochemical cycling of nutrients is needed. We develop and employ a novel, parsimonious, process-based model of nitrogen concentrations and stable isotopes that quantifies the competing processes of volatilization, biological assimilation, nitrification, and denitrification in nutrient-impacted rivers. Calibration of the model to nitrogen discharges from two wastewater treatment plants in the Grand River, Ontario, Canada, show that ammonia volatilization was negligible relative to biological assimilation, nitrification, and denitrification within 5 km of the discharge points.
- OPEN ACCESS
- Beth C. Norman,
- Paul C. Frost,
- Graham C. Blakelock,
- Scott N. Higgins,
- Md Ehsanul Hoque,
- Jennifer L. Vincent,
- Katarina Cetinic, and
- Marguerite A. Xenopoulos
Silver nanoparticles (AgNPs) are an emerging class of contaminants with the potential to impact ecosystem structure and function. AgNPs are antimicrobial, suggesting that microbe-driven ecosystem functions may be particularly vulnerable to AgNP exposure. Predicting the environmental impacts of AgNPs requires in situ investigation of environmentally relevant dosing regimens over time scales that allow for ecosystem-level responses. We used 3000 L enclosures installed in a boreal lake to expose plankton communities to chronic and pulse AgNP dosing regimens with concentrations mimicking those recorded in natural waters. We compared temporal patterns of plankton responses, Ag accumulation, and ecosystem metabolism (i.e., daily ecosystem respiration, gross primary production, and net ecosystem production) for 6 weeks of chronic dosing and 3 weeks following a pulsed dose. Ag accumulated in microplankton and zooplankton, but carbon-specific Ag was nonlinear over time and generally did not predict plankton response. Ecosystem metabolism did not respond to either AgNP exposure type. This lack of response corresponded with weak microplankton responses in the chronic treatments but did not reflect the stronger microplankton response in the pulse treatment. Our results suggest that lake ecosystem metabolism is somewhat resistant to environmentally relevant concentrations of AgNPs and that organismal responses do not necessarily predict ecosystem-level responses. - OPEN ACCESS
- OPEN ACCESS
- Barry N. Madison,
- Jessie Reynolds,
- Lauren Halliwell,
- Tim Leshuk,
- Frank Gu,
- Kerry M. Peru,
- John V. Headley, and
- Diane M. Orihel
Our study evaluates the efficacy of a “green” (i.e., sustainable, recyclable, and reusable) technology to treat waste waters produced by Canada’s oil sands industry. We examined the ability of a novel advanced oxidative method—ultra-violet photocatalysis over titanium dioxide (TiO2)-coated microparticles—to reduce the toxicity of naphthenic acid fraction components (NAFC) to early life stages of the fathead minnow (Pimephales promelas). Lengthening the duration of photocatalysis resulted in greater removal of NAFC from bioassay exposure waters; low- and high-intensity treatments reduced NAFC concentrations to about 20 and 3 mg/L (by Fourier-transformed infrared spectroscopy, FTIR), respectively. Treatments reduced the acute lethality of NAFC to fathead minnows by over half after low-intensity treatment and three-fold after high-intensity treatment. However, incomplete degradation in low-intensity treatments increased the incidence of chronic toxicity relative to untreated NAFC solutions and cardiovascular abnormalities were common even with >80% of NAFC degraded. Our findings demonstrate that photocatalysis over TiO2 microparticles is a promising method for mitigating the toxicity of oil sands process-affected water-derived NAFC to fish native to the oil sands region, but the intensity of the photocatalytic treatment needs to be considered carefully to ensure adequate mineralization of toxic constituents. - OPEN ACCESSCowichan Lake lamprey (Entosphenus macrostomus) is a threatened species resident to Mesachie Lake, Cowichan Lake, and adjoining Bear Lake and their major tributaries in British Columbia. Decreases in trapping success have created concerns that the population is declining. Some potential threats include water use, climate change, and management actions. Owing to the absence of long-term data on population trends, little information is available to estimate habitat quality and factors that influence it. We sought to fill this gap by examining associations between habitat area and variables representing suspected key drivers of habitat availability. Critical habitat areas were imaged using an unmanned aerial vehicle over a period of three years at three sites at Cowichan Lake and a subsequent habitat area was classified. Meteorological and anthropogenic controls on habitat area were investigated through automatic relevance detection regression models. The major driver of habitat area during the critical spawning period was water level during the storage season, which also depends on the meteorological variables and anthropogenic control. It is recommended that regulation of the weir should aim to ensure that the water level remains above the 1 m mark, which roughly equates to the 67% coverage of water on the habitat area used for spawning.