Applied Filters
- Geosciences
Journal Title
Topics
- Earth and Environmental Sciences31
- Integrative Sciences8
- Marine and Aquatic Sciences8
- Biological and Life Sciences7
- Conservation and Sustainability6
- Ecology and Evolution6
- Atmospheric and Climate Sciences3
- Engineering, Technology, and Mathematics2
- Mathematics and Statistics1
- Microbiology1
- Physical Sciences1
- Physics1
- Science and Policy1
- Science and Society1
- Technology1
Publication Date
Author
- Dunnington, Dewey W2
- Spooner, Ian S2
- Whitfield, Colin J2
- Akeju, Tolutope1
- Arnold, Lauren1
- Atkinson, Gail M1
- Bates, Lara M1
- Battigelli, Jeffrey1
- Baulch, Helen M1
- Belontz, Sara L1
- Boczulak, Stacy A1
- Bonannella, Carmelo1
- Bone, Christopher1
- Brault, M - O1
- Brown, Melisa1
- Brown, Vernon1
- Bundala, Mariam1
- Campbell, Linda M1
- Cannon, Sara1
- Cardini, Adriana M1
- Casson, N J1
- Cavaliere, Emily1
- Caño, Dioniz1
- Chaudhuri, Chiranjib1
- Chmura, Gail L1
Access Type
1 - 20of31
Save this search
Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Filters
Search Name | Searched On |
---|---|
Subject Areas: Geosciences (31) | 21 Dec 2024 |
You do not have any saved searches
- OPEN ACCESS
- Mathieu Guillemette,
- Catherine Potvin,
- Lauliano Martinez,
- Bonarge Pacheco,
- Dioniz Caño, and
- Ignacio Pérez
Natural forest management and conservation projects such as reducing emissions from deforestation and forest degradation, and enhancing forest carbon stocks (REDD+) face many challenges in the field. Implementation of these projects depends on such factors as clarity of information among stakeholders, legal security of territories, and local decision-making power. These challenges have been previously identified in the Upper Bayano watershed of eastern Panama, where a long history of land cover and land-use conflicts is present between three different human groups. With a long-term objective of natural forest conservation, this study aims to develop and test participatory approaches (participatory mapping and participatory 3D modelling) for the Upper Bayano watershed in an attempt to create a consensus among all stakeholders on current land cover and land-use conflicts to overcome challenges faced by projects as REDD+. We found that the third dimension allows a common understanding over the landscape, creates a common ground discussion, and leads towards a consensus, while the participatory approach brings discussion and positive effects among the stakeholders and the bridging institutions bring equity and transparency. Finally, we discuss implications of this knowledge generation and common agreement over the landscape for future forest management projects such as REDD+’s implementation. - OPEN ACCESSWe examine the importance of the rock weathering feedback mechanism during the last deglacial period (∼16 000–4000 BCE) using an Earth system model of intermediate complexity (the University of Victoria Earth System Climate Model (UVic ESCM)) with four box-model parameterizations of terrestrial weathering. The deglacial climate change is driven by changes in orbital parameters, ice core reconstructions of atmospheric CO2 variability, and prescribed removal of continental ice sheets. Over the course of the 12 000 year simulation period, increases in weathering provide a mechanism that slowly removes CO2 from the atmosphere, in opposition to the observed atmospheric CO2 increase during this period. These processes transfer both carbon and alkalinity to the ocean, the combination of which results in as much as a 1000 Pg C increase in total ocean carbon, relative to a control simulation with constant weathering. However, the rapid expansion of northern hemisphere vegetation introduces a significant uncertainty among the weathering parameterizations. Further experiments to test the individual impacts of weathering dissolved inorganic carbon and alkalinity fluxes on ocean biogeochemistry suggest that the worldwide distribution of rock types and the ratio of carbonate to silicate weathering may be crucially important in obtaining an accurate estimate of changes in global weathering rates.
- OPEN ACCESSAn ordinary differential equation describing the transverse profiles of U-shaped glacial valleys has two formal analogies, which we explore in detail, bridging these different areas of research. First, an analogy with point particle mechanics completes the description of the solutions. Second, an analogy with the Friedmann equation of relativistic cosmology shows that the analogue of a glacial valley profile is a universe with a future singularity of interest in theoretical models of cosmology. A Big Freeze singularity, which was not previously observed for positive curvature index, is also contained in the dynamics.
- OPEN ACCESSAmmonium deposition at the International Institute for Sustainable Development Experimental Lakes Area (IISD–ELA), in northwestern Ontario, Canada, has doubled in the last 45 years and thus is no longer among the low nitrogen (N) deposition sites in North America. This may be related to the concurrent intensification of Manitoba agriculture to the west and upwind of the ELA. Large increases in ammonium deposition at the ELA were important in driving the observed trend and increased the NH4 + to NO3 − ratio of input to aquatic and terrestrial systems. Stable isotope analyses of two years of bulk (wet and dry) atmospheric deposition revealed very large ranges in δ15N−NH4 + (22‰ range), δ15N−NO3 − (18‰), and δ18O–NO3 − (19‰). Few other δ15N−NH4 +, δ15N−NO3 −, and δ18O–NO3 − values have been published for Canadian precipitation. Increases in δ15N of NH4 + and NO3 − in July occurred with increases in total N deposition. The wide range and seasonal trends of δ15N and δ18O values in ELA precipitation mean that studies characterizing N inputs to watersheds and lakes require an ongoing and comprehensive annual sampling regime. Global trends of declining δ15N of N deposition evident in lake sediment records may be a result of increases in NH4 + deposition with lower δ15N−NH4 + values. Similarly, the relationship in Lake Superior between increasing NO3 − and lower δ15N−NO3 − values may be explained by increased atmospheric deposition of N with low δ15N values.
- OPEN ACCESSOrnithomimid material from the Belly River Group (Campanian) of Alberta, Canada is described as sharing characters with Qiupalong henanensis from the Qiupa Formation of Henan Province, China. Derived characters and character combinations of the pubis and astragalocalcaneum were previously used to diagnose Q. henanensis and support the referral of this material to Qiupalong sp., representing the first known occurrences of Qiupalong outside of China. Qiupalong is the sixth ornithomimid taxon to be reported from the Dinosaur Park Formation and the first ornithomimid genus with a transcontinental distribution. The Alberta material represents the oldest known occurrences of Qiupalong, and a reconsideration of character evidence suggests that this genus is phylogenetically nested within other North American ornithomimids. A North American origin for Qiupalong and subsequent dispersal to Asia is proposed.
- OPEN ACCESS
- Dewey W. Dunnington,
- Hilary White,
- Ian S. Spooner,
- Mark L. Mallory,
- Chris White,
- Nelson J. O’Driscoll, and
- Nic R. McLellan
We used a paleolimnological approach at Long Lake, Nova Scotia, to construct a 10 500-year record of metal deposition in lakebed sediments and elucidate the influence of both natural and anthropogenic environmental changes. Aquatic sediment concentrations of mercury (Hg), arsenic (As), and chromium (Cr) in Long Lake fluctuated substantially and, during some periods, exceeded guidelines for the protection of aquatic life. Increases in lead (Pb), Hg, Cr, trace metals, and nitrogen stable isotopes (δ15N) were broadly coincident with a period of widespread drying from ca. 8000 to 4000 cal BP and were likely a consequence of regional fires. From ca. 4000 cal BP until 1700 AD, metal levels in general were low due to decreased erosion, increased precipitation, and reduced fire activity. Water level lowering and forced sediment aggradation (tiding) in the 1800s led to increases in minerogenic Pb and Cr, though fossil fuel combustion also likely contributed to total Pb concentrations. Stratigraphic proxies indicated increased inorganic sedimentation rates, and reduced autochthonous productivity were coincident with lower Hg and As concentrations in the Long Lake sediment. Our data indicate that natural phenomena (fire) can result in sediment contaminant exceedances, that most metals have multiple sources, and that both human-induced disturbance and emissions have contributed to Pb contamination in the last 200 years. In addition, wetter and generally cooler climate appeared to favour lower concentrations of contaminants in lake sediments. Although wetland sediments in the Cumberland Basin Marshes are not heavily polluted with metals, the development of constructed wetlands and the disruption of aquatic sediments have the potential to concentrate, mobilize, and increase the bioavailability of metals. - OPEN ACCESSThere has been a significant increase in the rate of felt earthquakes in western Alberta and eastern British Columbia, which has been associated with hydraulic fracturing and wastewater disposal. The increased rate of seismicity and the potential for localized strong ground motions from very shallow events poses an increased hazard to critical infrastructure such as major dams—particularly for older high-consequence structures. This paper overviews the factors that affect the likelihood of damaging ground motions and examines their implications for hazard assessment and mitigation. A strategy aimed at reducing the likelihood of potentially damaging ground motions to achieve probabilistic targets for critical facilities is developed, comprising elements of both mitigation and avoidance. For critical facilities, an effective strategy includes (i) an exclusion zone having a radius of ∼5 km; and (ii) a monitoring-and-response protocol to track the rate of events at the M > 2 level within 25 km, with adjustment of operational practices if required. An exclusion zone provides a deterministic safety margin to ensure the integrity of those few facilities for which failure consequences are unacceptable. Real-time monitoring tied to a response protocol can be used to control the rate of significant events and thereby limit the hazard more broadly.
- OPEN ACCESSMultiparameter data with both spatial and temporal components are critical to advancing the state of environmental science. These data and data collected in the future are most useful when compared with each other and analyzed together, which is often inhibited by inconsistent data formats and a lack of structured documentation provided by researchers and (or) data repositories. In this paper we describe a linked table-based structure that encodes multiparameter spatiotemporal data and their documentation that is both flexible (able to store a wide variety of data sets) and usable (can easily be viewed, edited, and converted to plottable formats). The format is a collection of five tables (Data, Locations, Params, Data Sets, and Columns), on which restrictions are placed to ensure data are represented consistently from multiple sources. These tables can be stored in a variety of ways including spreadsheet files, comma-separated value (CSV) files, JavaScript object notation (JSON) files, databases, or objects in a software environment such as R or Python. A toolkit for users of R statistical software was also developed to facilitate converting data to and from the data format. We have used this format to combine data from multiple sources with minimal metadata loss and to effectively archive and communicate the results of spatiotemporal studies. We believe that this format and associated discussion of data and data storage will facilitate increased synergies between past, present, and future data sets in the environmental science community.
- OPEN ACCESSWe describe the underwater light field of the Strait of Georgia in spring and summer, using apparent optical properties (reflectance, attenuation coefficient of downwelling irradiance, the average cosine of downwelling irradiance, and the attenuation of scalar irradiance). Both the attenuation and reflectance of photosynthetically available radiation (PAR; 400–700 nm) are highest in the turbid waters of the Fraser River plume, due to scattering by mainly inorganic particles and absorption by coloured dissolved organic matter, phytoplankton, and other organic particles. Light is most diffuse in the surface waters of the plume and least diffuse at depth and away from the plume. Throughout the Strait, blue and red wavelengths are attenuated most rapidly resulting in a green peak of reflectance, the portion of the electromagnetic spectrum that penetrates the most deeply. PAR is attenuated to 1% of its surface intensity within 6–22 m in the spring and 4–23 m in the summer. For red and blue light, the depth of 1% penetration is never deeper than 9 m. All of the visible radiation, with the exception of some green light, is absorbed within the outflowing layer (15–30 m) that is exported from the Strait with the estuarine circulation. The rapid extinction of light helps to explain the very shallow distribution of phytoplankton.
- OPEN ACCESSAn increase in greenhouse gas emissions has led to a rise in average global air and ocean temperatures. Increased sea surface temperatures can cause changes in species’ distributions, particularly those species close to their thermal tolerance limits. We use a bioclimate envelope approach to assess potential shifts in the range of marine macroalgae harvested in North American waters: rockweed (Fucus vesiculosus Linnaeus, 1753), serrated wrack (Fucus serratus Linnaeus, 1753), knotted wrack (Ascophyllum nodosum (Linnaeus) Le Jolis, 1863), carrageen moss (Chondrus crispus Stackhouse, 1797), and three kelp species (Laminaria digitata (Hudson) J.V. Lamouroux, 1813; Saccharina latissima (Linnaeus) C.E. Lane, C. Mayes, Druehl et G.W. Saunders, 2006; and Saccharina longicruris (Bachelot de la Pylaie) Kuntze, 1891). We determined species’ thermal limits from the current sea surface temperatures associated with their geographical distributions. Future distributions were based on sea surface temperatures projected for the year ∼2100 by four atmosphere-ocean general circulation models and earth system models for regional concentration pathways (RCPs) 4.5 and 8.5. Future distributions based on RCP 8.5 indicate that the presence of all but rockweed (F. vesiculosus) is likely to be threatened by warming waters in the Gulf of St. Lawrence and along the Atlantic coast of Nova Scotia. Range retractions of macroalgae will have significant ecological and economic effects including impacts on commercial fisheries and harvest rates and losses of floral and faunal biodiversity and production, and should be considered in the designation of marine protected areas.
- OPEN ACCESSIn 1956, Shell Oil Company geologist M. King Hubbert published a model for the growth and decline over time of the production rates of oil extracted from the land mass of the continental US. Employing an estimate for the amount of ultimately recoverable oil and a logistic curve for the oil production rate, he accurately predicted a peak in US oil production for 1970. His arguments and the success of his prediction have been much celebrated, and the original paper has 1400 publication citations to date. The theory of “peak oil” (and subsequently, of natural resource scarcity in general) has consequently become associated with Hubbert and “Hubbert” curves and models. However, his prediction for the timing of a world peak oil production rate and the subsequent predictions of many others have proven inaccurate. We revisit the Hubbert model for oil extraction and provide an analysis of it and several variants in the language of (time) autonomous differential equations.
- OPEN ACCESS
- Leonora King,
- Lucy MacKenzie,
- Marc Tadaki,
- Sara Cannon,
- Kiely McFarlane,
- David Reid, and
- Michele Koppes
Effective policies promoting diversity in geoscience require understanding of how the values and practices of the community support the inclusion of different social groups. As sites of knowledge exchange and professional development, academic conferences are important culturing institutions that can alleviate or reproduce barriers to diversity in geoscience. This study examines diversity at a 2017 geoscience conference, the joint Canadian Geophysical Union and Canadian Society of Agricultural and Forest Meteorology annual meeting, through observation of participation, presentation content, and behaviour in conference sessions. Across 256 observed presentations, women constituted 28% of speakers, whereas women of colour made up only 5%. Participation rates differed between disciplinary sections, with the most populous sessions (Hydrology and Earth Surface) having the lowest percentage of women. Examination of presentation content reveals that the methods and scholarly contributions of both women and people of colour differed from the majority, suggesting an intellectual division of labour in geoscience. Examination of audience behaviours between presenters reveals how a “chilly climate” can be experienced by women and other marginalized demographics in conferences. We argue that there is more to be done than simply increasing numbers of women or other minorities in geoscientific spaces, and we suggest pathways to making geoscience a more inclusive and democratic pursuit. - OPEN ACCESS
- Julio Mercader,
- Tolutope Akeju,
- Melisa Brown,
- Mariam Bundala,
- Matthew J. Collins,
- Les Copeland,
- Alison Crowther,
- Peter Dunfield,
- Amanda Henry,
- Jamie Inwood,
- Makarius Itambu,
- Joong-Jae Kim,
- Steve Larter,
- Laura Longo,
- Thomas Oldenburg,
- Robert Patalano,
- Ramaswami Sammynaiken,
- María Soto,
- Robert Tyler, and
- Hermine Xhauflair
Ancient starch research illuminates aspects of human ecology and economic botany that drove human evolution and cultural complexity over time, with a special emphasis on past technology, diet, health, and adaptation to changing environments and socio-economic systems. However, lapses in prevailing starch research demonstrate the exaggerated expectations for the field that have been generated over the last few decades. This includes an absence of explanation for the millennial-scale survivability of a biochemically degradable polymer, and difficulties in establishing authenticity and taxonomic identification. This paper outlines new taphonomic and authenticity criteria to guide future work toward designing research programs that fully exploit the potential of ancient starch while considering growing demands from readers, editors, and reviewers that look for objective compositional identification of putatively ancient starch granules. - OPEN ACCESSMercury (Hg) is a global pollutant emitted primarily as gaseous Hg0 that is deposited in aquatic and terrestrial ecosystems following its oxidation to HgII. From that point, microbes play a key role in determining Hg’s fate in the environment by participating in sequestration, oxidation, reduction, and methylation reactions. A wide diversity of chemotrophic and phototrophic microbes occupying oxic and anoxic habitats are known to participate directly in Hg cycling. Over the last few years, new findings have come to light that have greatly improved our mechanistic understanding of microbe-mediated Hg cycling pathways in the environment. In this review, we summarize recent advances in microbially mediated Hg cycling and take the opportunity to compare the relatively well-studied chemotrophic pathways to poorly understood phototrophic pathways. We present how the use of genomic and analytical tools can be used to understand Hg transformations and the physiological context of recently discovered cometabolic Hg transformations supported in anaerobes and phototrophs. Finally, we propose a conceptual framework that emphasizes the role that phototrophs play in environmental Hg redox cycling and the importance of better characterizing such pathways in the face of the environmental changes currently underway.
- OPEN ACCESSAddition of nutrients, such as nitrogen, can degrade water quality in lakes, rivers, and estuaries. To predict the fate of nutrient inputs, an understanding of the biogeochemical cycling of nutrients is needed. We develop and employ a novel, parsimonious, process-based model of nitrogen concentrations and stable isotopes that quantifies the competing processes of volatilization, biological assimilation, nitrification, and denitrification in nutrient-impacted rivers. Calibration of the model to nitrogen discharges from two wastewater treatment plants in the Grand River, Ontario, Canada, show that ammonia volatilization was negligible relative to biological assimilation, nitrification, and denitrification within 5 km of the discharge points.
- OPEN ACCESS
- Sanjayan Satchithanantham,
- Henry F. Wilson,
- Patsy Michiels,
- Melanie Dubois,
- Sheng Li, and
- Alexander J. Koiter
Removal of trees for pasture or crop production is common along the stream reaches in the Canadian Prairies, resulting in a patchwork of forested and nonforest riparian vegetation along most streams. The effect of vegetation type on channel geomorphology and potential to influence sediment dynamics was studied using eight paired reaches (forested and nonforest) within agricultural watersheds in southern Manitoba, Canada. High potential for bank erosion was observed at all sites (bank erosion hazard index scores), but Pfankuch channel stability scores were significantly higher for forested reaches compared with nonforested reaches. Furthermore, forested reaches had higher width to depth ratios, but flood-prone widths did not differ significantly, resulting in lower entrenchment ratios. Reduced channel width and cross-sectional area in nonforested reaches created an overall reduction of in-stream habitat, increased velocity, and increased potential for exceedance of channel capacity and floodplain access during high-flow events. Channel widening in response to riparian afforestation efforts has been observed in a variety of other locations globally and the results of this study suggest that widening with afforestation can still be anticipated in this region where stream gradients are low, hydrology is dominated by snowmelt, and forest cover is minimal. - OPEN ACCESSCowichan Lake lamprey (Entosphenus macrostomus) is a threatened species resident to Mesachie Lake, Cowichan Lake, and adjoining Bear Lake and their major tributaries in British Columbia. Decreases in trapping success have created concerns that the population is declining. Some potential threats include water use, climate change, and management actions. Owing to the absence of long-term data on population trends, little information is available to estimate habitat quality and factors that influence it. We sought to fill this gap by examining associations between habitat area and variables representing suspected key drivers of habitat availability. Critical habitat areas were imaged using an unmanned aerial vehicle over a period of three years at three sites at Cowichan Lake and a subsequent habitat area was classified. Meteorological and anthropogenic controls on habitat area were investigated through automatic relevance detection regression models. The major driver of habitat area during the critical spawning period was water level during the storage season, which also depends on the meteorological variables and anthropogenic control. It is recommended that regulation of the weir should aim to ensure that the water level remains above the 1 m mark, which roughly equates to the 67% coverage of water on the habitat area used for spawning.
- OPEN ACCESS
- Bryant C. DeRoy,
- Vernon Brown,
- Christina N. Service,
- Martin Leclerc,
- Christopher Bone,
- Iain McKechnie, and
- Chris T. Darimont
Environmental management and monitoring must reconcile social and cultural objectives with biodiversity stewardship to overcome political barriers to conservation. Suitability modelling offers a powerful tool for such “biocultural” approaches, but examples remain rare. Led by the Stewardship Authority of the Kitasoo/Xai’xais First Nation in coastal British Columbia, Canada, we developed a locally informed suitability model for a key biocultural indicator, culturally modified trees (CMTs). CMTs are trees bearing evidence of past cultural use that are valued as tangible markers of Indigenous heritage and protected under provincial law. Using a spatial multi-criteria evaluation framework to predict CMT suitability, we developed two cultural predictor variables informed by Kitasoo/Xai’xais cultural expertise and ethnographic data in addition to six biophysical variables derived from LiDAR and photo interpretation data. Both cultural predictor variables were highly influential in our model, revealing that proximity to known habitation sites and accessibility to harvesters (by canoe and foot) more strongly influenced suitability for CMTs compared with site-level conditions. Applying our model to commercial forestry governance, we found that high CMT suitability areas are 51% greater inside the timber harvesting land base than outside. This work highlights how locally led suitability modelling can improve the social and evidentiary dimensions of environmental management. - OPEN ACCESSThe outcomes of environmental impact assessment (EIA) influence millions of hectares of land and can be a contentious process. A vital aspect of an EIA process is consideration of the accumulation of impacts from multiple activities and stressors through a cumulative effects assessment (CEA). An opportunity exists to improve the rigor and utility of CEA and EIA by incorporating core scientific principles of landscape ecology into EIA. With examples from a Canadian context, we explore realistic hypothetical situations demonstrating how integration of core scientific principles could impact EIA outcomes. First, we demonstrate how changing the spatial extent of EIA boundaries can misrepresent cumulative impacts via the exclusion or inclusion of surrounding natural resource development projects. Second, we use network analysis to show how even a seemingly small, localized development project can disrupt regional habitat connectivity. Lastly, we explore the benefits of using long-term historical remote sensing products. Because these approaches are straightforward to implement using publicly available data, they provide sensible opportunities to improve EIA and enhance the monitoring of natural resource development activities in Canada and elsewhere.
- OPEN ACCESSThere have been rapid recent reductions in sea ice age and extent in the Canadian Arctic, but little previous analysis of how this has impacted the navigability of Arctic shipping. In this study we analyze how navigability changed over the period 1972–2016 by converting Canadian Ice Service ice charts to shipping navigability charts for different hull strength classifications based on the Arctic Ice Regime Shipping System. Analysis focuses on the southern route of the Northwest Passage, and the Arctic Bridge route across Hudson Bay, for changes in early-season (∼25 June), mid-season (∼3 September), and late-season (∼15 October) conditions. Results reveal that there has been a marked easing in shipping navigability for all vessels over the past decade, driven by reductions in the area and age of sea ice, particularly across the southern route of the Northwest Passage. Both medium (Type B) and little (Type E) ice strengthened vessels were able to transit the full length of this route in the middle part of the shipping season in 2012–2016, but not in 1972–1976 or 1992–1996.