Applied Filters
- Conservation and Sustainability
Journal Title
Topics
- Integrative Sciences182
- Science and Policy57
- Earth and Environmental Sciences38
- Biological and Life Sciences33
- Marine and Aquatic Sciences31
- Science and Society31
- Ecology and Evolution30
- Geosciences7
- Science Communication5
- Ethics3
- Plant and Agricultural Sciences2
- Public Health2
- Science Education2
- Chemistry1
- Data Science Theory and Methods1
- Physical Sciences1
- Zoology1
Publication Date
Author
- Cooke, Steven J17
- Bennett, Joseph R8
- Lemieux, Christopher J6
- Lotze, Heike K6
- Olive, Andrea6
- Jacob, Aerin L5
- Loring, Philip A5
- Ban, Natalie C4
- Beazley, Karen F4
- Favaro, Brett4
- Swerdfager, Trevor4
- Avery-Gomm, Stephanie3
- Boyce, Daniel G3
- Bueddefeld, Jill3
- Carruthers den Hoed, Don3
- Cheung, William W L3
- Colla, Sheila R3
- Davy, Christina M3
- Ford, Adam T3
- Gould, A Joyce3
- Halpenny, Elizabeth A3
- He, Mu3
- Hvenegaard, Glen T3
- Joubert, Brian3
- Kraus, Daniel3
Access Type
21 - 40of182
Save this search
Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Filters
You do not have any saved searches
- OPEN ACCESS
- Emmanuel Mapfumo,
- Deborah Hemmerling,
- Cecilia Bukutu,
- Sachin Acharya,
- Emma Paterson,
- Seth Nobert,
- Megan MacElheren, and
- Makan Golizeh
A laboratory-based study was conducted to investigate the consumption and degradation of expanded polystyrene (EPS) by superworms (darkling beetle larvae, Zophobas morio; heterotypic synonym Zophobas atratus). Superworms fed on one of three diets (wheat bran control, EPS blocks, or EPS S-shaped chips) following a 60-second pretreatment with UV radiation or no UV radiation exposure. Loss-of-mass measurements were conducted every week for 4 weeks. Nutrients (nitrogen and phosphorus) and EPS degradation products in frass were determined as well as the superworm gut microbiome composition. The average loss of mass after 28 days was 34.7% for EPS blocks and 25.6% for S-shaped chips. Small quantities of nitrogen and phosphorus were found in the frass of superworms that fed on the EPS diet, but they were lower than those from wheat bran-fed superworms. Twenty-one EPS degradation products were identified in the frass of superworms on an EPS diet, including short-chain carboxylic acids, polyols, amino acids, metabolites of amino acids, and phosphoric acids. Pseudomonas aeruginosa (polystyrene degrader) and Stenotrophomonas sp. (nitrogen fixer and phosphorus solubilization promoter) were identified from the guts of superworms that fed on an EPS diet. Overall, superworms have the potential to deal with plastic waste degradation problems. - OPEN ACCESSIn recent years, increasing attention has been directed to “natural climate solutions” to mitigate climate change through the protection, restoration, and improved management of carbon-storing ecosystems. In practice, Indigenous Peoples have been implementing natural climate solutions for millennia through land stewardship. As Indigenous nations and communities in Canada reassert stewardship roles through Indigenous Guardians programs, the question arises: what possibilities emerge when natural climate solutions are driven by Guardians, guided by multifaceted community priorities and Indigenous knowledge? This paper responds to this question, drawing upon collaborative research with Wahkohtowin Development, a social enterprise based in Treaty 9 territory (Ontario, Canada), made up of Chapleau Cree First Nation, Missanabie Cree First Nation, and Brunswick House First Nation. We engaged youth Guardians in workshops that generated insights on the role of youth, cross-cultural collaboration, and holistic conceptualizations of climate action rooted in Indigenous ontologies (such as the Cree philosophy of wahkohtowin, embodying kinship and interconnectedness). Our analysis reveals that Indigenous Guardians are well positioned to advance natural climate solutions and to do so in an integrative manner that addresses intersecting challenges—with benefits for communities, ecosystems, climate action, and reconciliation.
- OPEN ACCESS
- Kathryn Yarchuk,
- Joseph Northrup,
- Allyson Menzies,
- Nadine Perron,
- Claire Kemp,
- Samantha Noganosh, and
- Jesse Popp
The strengths of Indigenous Knowledges and need for reconciliation are increasingly recognized within conservation, leading to a rise in collaborative, cross-cultural research initiatives. As both a cultural keystone and important harvest species, moose are of value to both Indigenous and non-Indigenous Peoples, presenting an opportunity to pursue moose monitoring strategies that embrace the strengths of Indigenous and Western knowledges. While various frameworks provide theoretical direction on how to do so, few resources outline how to apply them in practice. Leaning on guidance of the Ethical Space framework, we explored the meaning and application of value-based approaches in the context of moose monitoring in central Ontario through semi-structured interviews with First Nation communities, the Ontario provincial crown government, and academic researchers. Collectively, 20 core values were identified to be important when bringing Indigenous and non-Indigenous partners together, coupled with a range of tangible actions necessary for fostering Ethical Space. Values and actions reflected three main themes: an emphasis on the long term, the importance of building and maintaining relationships, and the ability to evolve and adapt over time. Insights from this research provide tools and guidance for others interested in enacting Ethical Space in the context of cross-cultural wildlife monitoring and research. - OPEN ACCESSMarine protected areas (MPAs) are critical in safeguarding biodiversity and ecosystem functions under climate change. The long-term effectiveness of these static conservation measures will depend on how well they represent current and future ocean changes. Here, we use the Climate Risk Index for Biodiversity to assess the vulnerability representation of marine ecosystems within the Canadian marine conservation network (CMCN) under two divergent emissions scenarios. We found that MPAs best represent climate vulnerability in Atlantic Canada (85% representativity overall, and 93% in the Gulf of Saint Lawrence under low emissions), followed by the Pacific (78%) and Arctic (63%; lowest in the Eastern Arctic (41% under high emissions) regions). Notably, MPAs with lower climate vulnerability are proportionally overrepresented in the CMCN. Broad-scale geographic targets employed in the Scotian Shelf-Bay of Fundy network planning process achieve over 90% representativity of climate vulnerabilities, underscoring the importance of ensuring habitat representativity and geographic distribution in conservation planning to enhance climate resilience, even if not explicitly prioritized. Moving towards Canada’s target to protect 30% of its waters by 2030, prioritizing representativity and designation of MPAs in currently underrepresented climate-vulnerable regions may be crucial to enhancing the resilience of the CMCN amidst an ever-changing climate.
- OPEN ACCESSIn Quebec, the Act Respecting Threatened or Vulnerable species (ARTV), adopted in 1989, aims to safeguard Quebec's wild genetic diversity by protecting species at risk. However, since its implementation about 30 years ago, it has been repeatedly pointed out that the application of the Quebec legislative framework for the protection of wildlife species at risk was often slow and inadequate. The aim of this article is therefore to make a series of observations on the limits of current legislation and then propose nine urgent recommendations to improve the effectiveness of conservation efforts for species at risk in Quebec. Our recommendations aim to increase the efficiency and transparency of the designation process, reconsider compensation mechanisms for the loss of critical habitat, and harmonize species status between the federal and provincial levels. We hope that our article will pave the way for a constructive discussion leading to an improved protection of wildlife species in precarious situations and their persistence for future generations. The English version of this article is available in the Supplementary material file.
- OPEN ACCESSLarge amounts of waste paper are generated annually worldwide. Although some of it is recycled, up to 50% is landfilled or incinerated. The remanufacturing of waste paper to produce pencils is proposed as a novel, sustainable business solution. A sustainability analysis of this process was performed to quantify indexes of technical, environmental, economic, and social sustainability. Small-to-medium business models were evaluated, in which 15 000 pencils/shift/day can be produced from 135 kg of waste paper, with a maximum productivity of 64 800 pencils/day. Productivity, operating costs, power consumption, land footprint, machine delivery cost, and number of workers were used to analyze the technical feasibility. The cost-to-profit ratio, cost and profit per pencil, and daily profit were used to evaluate economic sustainability. The amounts of municipal solid waste and recovered paper waste, saved embodied energy, and prevented CO2 emissions were used to analyze environmental sustainability. The number of workers and labor costs were used to evaluate human development and social sustainability. The machines required for the remanufacturing line are considered sufficiently mature, remanufactured pencils are less expensive to produce than wooden pencils, and the proposed process minimizes the amount of waste paper sent to landfills and avoids the use of new wood for producing pencils, thereby satisfying technical, economic, and environmental sustainability, respectively. The final sustainability index of 0.9 is considered very high and sufficient for operating a profitable, sustainable business with a profit of 252–583 USD/day.
- OPEN ACCESSMany of Canada’s waterways are modified by the deepening and straightening of stream channels, converting them into agricultural drains to create arable land. While these agricultural drains support diverse aquatic communities and provide important habitat for species at risk, current policies allow for maintenance activities that threaten the survival and longevity of at-risk fish populations. Using three case studies from Ontario, we highlight current challenges to protecting aquatic species at risk in agricultural drains and potential conservation actions that can be taken to protect and restore aquatic species at risk and their habitat within those drains. Conservation actions may vary from ecological modeling to collaborative development of mitigation techniques, and restoration of naturalized habitat in anticipation of future alterations. We provide nine recommendations (including improved legislation, permitting, mitigation, and compliance) on how to better conserve and protect aquatic species at risk in agricultural drains in the future.
- OPEN ACCESS
- Elias del Valle,
- Benjamin Neal,
- Ilse Martínez-Candelas,
- Patrick Dann,
- Dawn Webb, and
- Loren McClenachan
The impacts fishing communities face as a result of declining fisheries productivity and access may largely hinge on measurable attributes of their social resilience. Wild-origin Pacific salmon populations have been in a marked decline since the 1960s, resulting in progressively declining access for many commercial fisheries. More recent acute stressors have caused appreciable tribulation to commercial fishers in British Columbia, raising concern over their capacity to remain viable in the industry, and underscoring the need to examine the fishery under a social resilience framework. Here, we coupled an online survey instrument with in-depth interviews to assess commercial salmon fishers’ social resilience, socioeconomic characteristics, risk perceptions, trust in fishery management, and the relationships between these variables. Our results show that social resilience is low overall, with older, more experienced, and less diversified fishers being particularly vulnerable to declining salmon access. While 73% of fishers reported having plans to adapt to future declines in salmon access, 92% reported feeling that there are barriers impeding their adaptation, and 75% reported having no trust in fisheries management helping them adapt. Fishers’ social resilience was positively correlated with their trust in, and perceived trust from fisheries management. - OPEN ACCESSReintroduction is an important tool in the conservation and recovery of aquatic species at risk. However, components of the reintroduction process such as transportation have the potential to induce physiological stress and the extent to which preparatory techniques can mitigate this stress is poorly understood in small-bodied fishes. To address this concern, we studied the effect of transport on two fitness-related performance measures: maximum metabolic rate and thermal tolerance in redside dace (Clinostomus elongatus), an imperilled small-bodied stream fish native to eastern North America. Prior to transportation, we manipulated the body condition of redside dace over a 12-week period, by providing either low (1% of their total body mass) or high (2% of their total body mass) rations. The goal of this manipulation was to influence body condition, as higher body condition can enhance physiological performance. Subsequently, redside dace were transported for varying durations: 0, 3, and 6 h. Following transportation, we measured maximum metabolic rate (µmol/h) and thermal tolerance (CTmax, °C). Our results indicate that neither transport nor body condition had a significant effect on maximum metabolic rate or thermal tolerance (CTmax). These findings provide preliminary evidence that redside dace can physiologically tolerate transport based on the endpoints measured and this information may possibly be extended to other small-bodied fish, for which information is lacking.
- OPEN ACCESS
- Colin J. Whitfield,
- Emily Cavaliere,
- Helen M. Baulch,
- Robert G. Clark,
- Christopher Spence,
- Kevin R. Shook,
- Zhihua He,
- John W. Pomeroy, and
- Jared D. Wolfe
In many regions, a tradeoff exists between draining wetlands to support the expansion of agricultural land, and conserving wetlands to maintain their valuable ecosystem services. Decisions about wetland drainage are often made without identifying the impacts on the services these systems provide. We address this gap through a novel assessment of impacts on ecosystem services via wetland drainage in the Canadian prairie landscape. Draining pothole wetlands has large impacts, but sensitivity varies among the indicators considered. Loss of water storage increased the magnitude of median annual flows, but absolute increases with drainage were higher for larger, less frequent events. Total phosphorus exports increased in concert with streamflow. Our analysis suggested disproportionate riparian habitat losses with the first 30% of wetland area drained. Dabbling ducks and wetland-associated bird abundances respond strongly to the loss of small wetland ponds; abundances were predicted to decrease by half with the loss of only 20%–40% of wetland area. This approach to evaluating changes to key wetland ecosystem services in a large region where wetland drainage is ongoing can be used with an economic valuation of the drainage impacts, which should be weighed against the benefits associated with agricultural expansion. - OPEN ACCESS
- J.L. McCune,
- Sarah J. Baldwin,
- Joseph R. Bennett,
- Brian C. Husband,
- Simon Joly,
- Daniel Kraus,
- Eric G. Lamb,
- Jana C. Vamosi,
- Alyson C. Van Natto, and
- Jeannette Whitton
Plants make up more than one quarter of all species listed under Canada’s Species at Risk Act, but very few have improved in status over time. Ineffective legal protections, lack of public awareness, difficulties in prioritizing species, and a scarcity of research relevant to the recovery of plant species at risk are some of the many challenges facing effective plant conservation in Canada. We used an online survey to ask 243 people who work in plant conservation or who do research in plant ecology or evolution to assess the state of plant conservation in Canada and to identify the actions needed to improve it. Most respondents agreed that Canada is underperforming or merely average when it comes to conserving plants. Based on their responses, we outline a set of recommendations that could form the basis of a national strategy for plant conservation in Canada. These include greater advocacy for habitat protection, connecting researchers with funding opportunities, supporting graduate students working on research related to plant conservation, increasing public awareness of plants, collaborating with and respecting Indigenous knowledge holders, promoting collaboration between researchers and local conservation groups, and increasing capacity to assess the status of species that are potentially at risk. - OPEN ACCESS
- Mark K. Taylor,
- Helen Irwin,
- Gregg T. Tomy,
- Fonya Irvine,
- Margaret Yole,
- Simon Despatie, and
- Karsten Liber
It can be challenging for practitioners to determine reasonable response actions following an environmental spill because there are risks associated with the recovery process, acute constraints on time, and few case studies available from antecedent events. Here, we evaluate environmental risk using a screening level assessment (SLA) and describe risk management actions during the response phase of a train derailment that released 600 tonnes of fly ash into a headwater creek in Banff National Park, Canada. Trace metal concentrations and physico-chemical parameters from downstream of the derailment site were compared to Canadian environmental quality guidelines and upstream reference values. There was a 1–2.2-fold exceedance of sediment quality guidelines (As, Cd, and Se) as well as a 3.6–17.5-fold exceedance of water quality guidelines (Al, Cd, Fe, and turbidity) downstream of the train derailment. Despite uncertainty about site-specific toxicity when using a SLA, we did require the removal of the settled fly ash from the creek based on the multiple exceedances of guidelines, regulatory context, wilderness setting, and potential contribution to cumulative effects downstream. Case studies that evaluate risk and describe risk management actions help practitioners make consistent and efficient decisions during the response phase of a spill. - OPEN ACCESS
- Neil J. Mochnacz,
- Matthew M. Guzzo,
- Michael J. Suitor,
- Cameron C. Barth,
- Elodie Ledee,
- Andrew J. Chapelsky,
- Steven J. Cooke,
- Douglas P. Tate, and
- Lee F.G. Gutowsky
The movement ecology of Bull Trout (Salvelinus confluentus) in watersheds at the northern geographic range extent is not well understood. We implanted 54 Bull Trout with acoustic transmitters in the Prairie Creek watershed, Northwest Territories, Canada and tracked fish from July 2011 to October 2012 using 19 stationary hydrophones. Bull Trout movement patterns generally corresponded to two groups, as a result of individual variation within and across seasons. The first group exhibited seasonal variations in movement and habitat use, moving most (range 11.7–115.9 km) and occupying the largest home ranges in summer and autumn, while exhibiting little movement during winter and spring. The second group made negligible movements within seasons and resided in localized areas. Restricted movement in winter resulted in a severe range contraction. The average distance moved within a season was 11.5 km (range 0.3–64.9 km per fish). The unusually high prevalence of stationarity in this watershed suggest fish can complete all life processes (spawning, feeding, and rearing) in short reaches (<10 km) of Prairie Creek and tributaries. We encourage researchers to replicate our work in other northern watersheds to determine if the life history we describe represents a regional divergence from more southerly populations. - OPEN ACCESS
- Susan C.C. Gordon,
- Adam G. Duchesne,
- Michael R. Dusevic,
- Carmen Galán-Acedo,
- Lucas Haddaway,
- Sarah Meister,
- Andrea Olive,
- Marlena Warren,
- Jaimie G. Vincent,
- Steven J. Cooke, and
- Joseph R. Bennett
Canada’s provinces and territories govern species at risk across most of Canada, with the federal Species at Risk Act generally covering only aquatic species, migratory birds, and species living on federal land. More than a decade after a 2012 report by the environmental law charity Ecojustice on species at risk protection in Canada, we use the same criteria to evaluate the current state of provincial and territorial species at risk legislation, and we provide updates on changes in each jurisdiction since 2012. These criteria are as follows: whether at-risk species are being identified, whether these species are being protected, whether their habitat is being protected, and whether species recovery plans are being created and implemented. We find that there is considerable variation across jurisdictions, with shortcomings that result in inadequate protections for at-risk species, as well as strong components that should be adopted by all jurisdictions. We recommend seven key areas for improvement: dedicated and harmonized legislation, limited discretionary power, increased embrace of scientific and Indigenous knowledge, appropriate timelines for actions, reasonable exemptions to protections, habitat protection across land ownership types, and transparency throughout the process. We urge policymakers to address current shortcomings as they work toward meeting Canada’s biodiversity conservation commitments. - OPEN ACCESS
- Rachel Nalepa,
- Jennifer Provencher,
- Jolene A. Giacinti,
- Alana Wilcox,
- Christopher M. Sharp,
- Robert A. Ronconi,
- James O. Leafloor,
- Steven Duffy,
- Michael Brown, and
- Stephanie Avery-Gomm
There is a global movement to implement a One Health approach across sectors to holistically address emerging issues that have implications for public, animal, and environmental health. The operationalization of a One Health model can support knowledge sharing and build an evidence base for designing research programs and decision-making tools to evaluate and mitigate intersectoral health challenges. In late 2021, the highly pathogenic avian influenza virus (HPAIV) H5N1 2.3.4.4b was detected in eastern Canada, and subsequently spread throughout the flyways of North America. Given the multiyear persistence of the current HPAIV in Europe and the continued detections in North America, Environment and Climate Change Canada and partners recognized the need to prioritize HPAIV-related information needs to inform future decision-making and management. In early 2023, we carried out an expert opinion exercise with partners from across One Health domains and expertise to prioritize information needs related to the conservation and management of migratory birds in Canada. The results informed on-the-ground programming for migratory bird activities in 2023 and onwards. The process illustrates how a One Health lens can be applied with a conservation focal point, using dedicated facilitation to synthesize expert opinions across groups with non-overlapping mandates. - OPEN ACCESS
- Ana Deaconu,
- Malek Batal,
- Claudia Irene Calderón,
- Patrick Caron,
- Jessica McNally,
- Emile Frison,
- Geneviève Mercille,
- Mylène Riva, and
- Ben Brisbois
The international collaboration network Food Systems Innovation to Nurture Equity and Resilience Globally (Food SINERGY) unites food system experts concerned with the confluence of environmental, geopolitical, economic, and public health stressors that weaken food systems and increase inequalities. In March 2023, Food SINERGY participants from universities, research institutes, food policy advocacy groups, Indigenous networks, farmers’ associations, consumer organizations, social enterprises, and non-governmental organizations from around the world met in Mont Orford, Québec, for a forum to revisit food system structures across local-to-global scales and to identify key junctures for transformation. This article summarizes the network's discussions in the context of the existing literature. Key knowledge contributions include the importance of diversification throughout the food system for cultivating resilience; the value of food sovereignty in promoting equity across scales; the reconciliation between food sovereignty and equitable trade; the need for consonance between policy environments at different scales to enable positive societal actions; the pioneering role of food system innovations that challenge conventional political and economic structures, with emphasis on agroecology; and the need for critical self-reflection around knowledge production and knowledge use to better serve equitable food systems. These discussion outcomes provide insights for actors seeking to transform food systems in support of equity and resilience. - OPEN ACCESS
- Steven J. Cooke,
- Andy J. Danylchuk,
- Joel Zhang,
- Vivian M. Nguyen,
- Len M. Hunt,
- Robert Arlinghaus,
- Kathryn J. Fiorella,
- Hing Man Chan, and
- Tony L. Goldberg
Recreational fisheries involve an intimate connection between people, individual fish, and the environment. Recreational fishers and their health crucially depend on healthy fish and ecosystems. Similarly, fish and ecosystems can be impacted by the activities of people including recreational fishers. Thus, amplified by the global interest in recreational fishing, we posit that recreational fishing is particularly suited as an empirical system to explore a One Health perspective, with a goal of creating pathways to better manage such socio-ecological systems for the benefit of people, fish, and the environment. Although zoonoses are uncommon in fishes, fish can carry pathogens, biotoxins, or contaminants that are harmful to people. When captured and released, fish can experience stress and injuries that may promote pathogen development. Similarly, when humans contribute to environmental degradation, not only are fish impacted but so are the humans that depend on them for nutrition, livelihoods, culture, and well-being. Failure to embrace the One Health perspective for recreational fisheries has the potential to negatively impact the health of fish, fisheries, people, society, and the aquatic environment—especially important since these complex social–ecological systems are undergoing rapid change. - OPEN ACCESSSeeking to capitalize on a surge in global demand for critical minerals, the Canadian mining sector claims that regulatory processes like Environmental Assessment (EA) impede and delay mining’s economic benefits. This paper investigates whether regulation has delayed mining projects and how much economic benefit mines have delivered in British Columbia (BC), focusing the mines’ performance post-EA. We audit the 27 mines granted an EA certificate in BC since 1995 and projected to open by 2022, comparing each mine’s forecasted and actual timelines and economic benefits (production, employment, and taxes), and identifying publicly-stated reasons for any mine delays. Seven of the 27 mines opened on time: 13 remain non-operational, and of the 14 mines that have operated, seven were delayed. Regulation was cited as a factor in only three of the 20 delayed projects; economic factors like commodity prices were the most common cause of delay. Lack of data and transparency on economic benefits significantly constrained our benefit audit, but BC mines for which data are available are underperforming across production (−77%), employment (−82%), and tax revenue (−100%). These findings suggest economic underperformance and mine delays post-EA are common, with delays typically resulting from economic factors, not government regulations.
- OPEN ACCESSWith the influence of climate change on marine systems expanding, climate adaptation will be fundamental for the future of fisheries management. An exponential increase in Atlantic halibut Hippoglossus hippoglossus landings over the past decade has coincided with warming ocean temperatures. Here, we explore how historical changes in abundance have been linked to changing thermal habitat conditions and project trends with a warming climate under different emissions scenarios. From 1990 to 2018, available thermal habitat increased by 11.6 ± 7.35% and growing degree days have increased by 13.5 ± 7.86 °C·days across the region. With warming, the probability of occurrence is projected to increase up to 20.5% in Canada by 2085 under RCP 8.5 for Atlantic halibut. Our results suggest that shifting patterns of halibut distribution and abundance are linked to thermal conditions and that continued warming will likely continue to enhance habitat conditions, leading to increased abundance in the Canadian range. Collectively, these results illustrate the influence of shifting environmental conditions on population dynamics and emphasize the importance of adaptive management practices in a dynamic future climate.
- OPEN ACCESSMismatches between institutions and social–ecological systems (SESs) are one of the foremost challenges in natural resource management. However, while mismatches are often cited in the literature as a major challenge, empirical evidence of mismatches and their consequences is limited. This is particularly true for complex SESs, such as on the Pacific Coast of North America, where salmon drive interactions across multiple environments, jurisdictions, and scales. Here, I use the theoretical concept of fit to examine institutional alignment in a large-scale Pacific salmon SES, the Skeena River watershed in British Columbia, Canada. Utilizing Canadian federal environmental assessments as a proxy for colonial environmental governance institutions, I describe the common causes and consequences of mismatches between institutions and salmon SESs. This case study suggests that mismatches are threatening salmon sustainability and negatively affecting Indigenous People’s rights, livelihoods, and approaches to resource management and stewardship. I argue that improving social–ecological fit in salmon SESs will require new or revitalized forms of environmental governance that consciously fit the underlying social–ecological dynamics. While these findings are based on the Skeena River watershed, they may be generalizable to other salmon SESs in which mismatches between social and ecological processes and institutions exist.