Applied Filters
- Earth and Environmental Sciences
Journal Title
Topics
- Marine and Aquatic Sciences103
- Integrative Sciences56
- Biological and Life Sciences40
- Conservation and Sustainability36
- Ecology and Evolution32
- Geosciences31
- Atmospheric and Climate Sciences12
- Science and Policy9
- Science and Society7
- Biomedical and Health Sciences5
- Zoology4
- Genetics and Genomics3
- Physical Sciences3
- Science Communication3
- Chemistry2
- Clinical Sciences2
- Engineering, Technology, and Mathematics2
- Epidemiology2
- Ethics1
- Mathematics and Statistics1
- Microbiology1
- Nutrition, Sport, and Exercise Sciences1
- Physics1
- Technology1
Publication Date
Author
- Cheung, William W L4
- Hall, Britt D4
- Lotze, Heike K4
- Boyce, Daniel G3
- Chan, Hing Man3
- Corcoran, Patricia L3
- Miller, Kristina M3
- Rochman, Chelsea M3
- Rubidge, Emily M3
- Salomon, Anne K3
- Tabata, Amy3
- Vermaire, Jesse C3
- Atlas, William I2
- Ban, Natalie C2
- Baulch, Helen M2
- Bernstein, Sarah2
- Blanchard, Julia L2
- Boczulak, Stacy A2
- Bryndum-Buchholz, Andrea2
- Burd, Brenda J2
- Coffin, Michael R S2
- Cooke, Steven J2
- Courtenay, Simon C2
- Darimont, Chris T2
- Dunnington, Dewey W2
Access Type
1 - 20of133
Save this search
Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Filters
Search Name | Searched On |
---|---|
Subject Areas: Earth and Environmental Sciences (133) | 20 Jan 2025 |
You do not have any saved searches
- OPEN ACCESSWe examined the diet of Atlantic puffin (Fratercula arctica) chicks at three midcoast Maine, USA, colonies during the years 2005–2014 and found that the puffins at each island have a distinct diet that has changed in recent years. White hake (Urophycis tenuis) is by far the most frequently delivered prey at each island. Atlantic herring (Clupea harengus) is the second most frequently delivered food, but has declined in recent years on two islands. In contrast, butterfish (Poronotus triacanthus), haddock (Melanogrammus aeglefinus), and redfish (Sebastes spp.) have increased in the puffin diet on all islands. Chick condition declined significantly from 1993 to 2009. We demonstrate that puffin chicks with greater body weight experience a higher chance of postfledging survival as compared to chicks with lower body weight. The years 2012–2013 were a period of extreme sea surface warming, in which puffin hatching success and productivity sharply declined. This study provides new insight into changes in marine communities, examining changes in chick diet. We discuss our findings in relation to warming sea surface temperatures, recent climate-related decline in puffin productivity in the Gulf of Maine, and the impact of commercial fisheries on forage fish.
- OPEN ACCESSPersistence of absorbable sutures in fishes in waters below 10 °C affects surgical decisions including approach, closure strategy, and suture selection. We hypothesized that the rate of suture hydrolysis would vary directly with water temperature. Two absorbable monofilament 3-0 suture materials used in fish surgery, poliglecaprone (Monocryl™) and polyglyconate (Maxon™), were evaluated. The maximum tensile load (strength) was measured for suture loops (n = 6) maintained in filtered city water for 2, 4, 6, or 8 weeks at 4, 25, or 37 °C. For Maxon™ at 4 or 25 °C, tensile strength did not decrease over time. However, for Monocryl™ at 4 °C, 2-, 4-, and 8-week loops were stronger than baseline loops. At 25 °C, tensile strength of the suture material declined after 2 weeks. Also, at 37 °C, the optimal design temperature for both suture materials, the strength of Maxon™ decreased at 6 and 8 weeks. Two 4-week loops of Monocryl™ disintegrated when handled, and after 6 and 8 weeks, all were untestable. This study confirms that absorbable sutures lose strength more slowly at ambient temperatures lower than the optimal design temperature (e.g., human body temperature) and will likely be retained longer in fishes living in waters below 25 °C.
- OPEN ACCESS
- Mathieu Guillemette,
- Catherine Potvin,
- Lauliano Martinez,
- Bonarge Pacheco,
- Dioniz Caño, and
- Ignacio Pérez
Natural forest management and conservation projects such as reducing emissions from deforestation and forest degradation, and enhancing forest carbon stocks (REDD+) face many challenges in the field. Implementation of these projects depends on such factors as clarity of information among stakeholders, legal security of territories, and local decision-making power. These challenges have been previously identified in the Upper Bayano watershed of eastern Panama, where a long history of land cover and land-use conflicts is present between three different human groups. With a long-term objective of natural forest conservation, this study aims to develop and test participatory approaches (participatory mapping and participatory 3D modelling) for the Upper Bayano watershed in an attempt to create a consensus among all stakeholders on current land cover and land-use conflicts to overcome challenges faced by projects as REDD+. We found that the third dimension allows a common understanding over the landscape, creates a common ground discussion, and leads towards a consensus, while the participatory approach brings discussion and positive effects among the stakeholders and the bridging institutions bring equity and transparency. Finally, we discuss implications of this knowledge generation and common agreement over the landscape for future forest management projects such as REDD+’s implementation. - OPEN ACCESSUnmanned aircraft systems (UASs) were tested for counting Chinook salmon (Oncorhynchus tshawytscha) redds as a more accurate, safer alternative to manned helicopter flights. Counting redds from the helicopter was less expensive and time consuming, but of the total redds counted at selected sites with a UAS, an average (± SD) of only 77% ± 14% was counted from the helicopter. A river-wide census of redds was not possible with a UAS because the study area was too large for the single field crew to survey. Simulation analyses were used to compare stratified random sampling (STRS) and sampling proportional to size (PPS) for estimating annual total redd counts from data collected with a UAS. The STRS estimates were more accurate and precise, whereas the PPS estimates, though biased, had 95% CIs that included the observed redd count more frequently. We strongly recommend that researchers conduct simulation analyses to evaluate alternative survey sampling methods if they are considering replacing census counts made from manned aircraft with counts estimated from data collected with a UAS. We conclude that UAS application reduces the risk inherent to manned aircraft flights, but the reduction in risk can come at the cost of estimates of population parameters that can sometimes be inaccurate and lack 95% CI coverage.
- OPEN ACCESSTotal Zn concentrations and Zn isotope ratios were measured, using multicollector inductively coupled plasma (ICP)-mass spectrometry (MS), in three species of aquatic insects collected from a stream in Peterborough, Ontario, Canada. Total Zn levels averaged 193 ± 88 μg/g dry weight (dw) in water striders (Heteroptera: Gerridae, Aquarius remigis) and were significantly higher than the concentrations measured in stonefly nymphs (Plecoptera: Perlidae, Acroneuria abnormis) and caddisfly larvae (Trichoptera: Limnephilidae, Pycnopsyche guttifer), i.e., 136 ± 34 μg/g dw and 125 ± 26 μg/g dw, respectively. Average delta values for 66Zn/64Zn in the water striders were approximately 0.7‰ lighter (−1.2‰ ± 1.0‰) and were significantly different than those measured for stoneflies (−0.45‰ ± 0.62‰) and caddisflies (−0.51‰ ± 0.54‰). Nitrogen isotope ratios were significantly different (P < 0.05) among the three species suggesting differences in trophic positioning. Similar to the Zn isotope ratios, δ 13C values for the water striders (−28.61‰ ± 0.98‰) were significantly different than those of the stoneflies and caddisflies, i.e., −30.75‰ ± 1.33‰ and −30.68‰ ± 1.01‰, respectively. The data suggest that the differences observed in Zn ratios relate to food source for these insects. Similar to their carbon sources, Zn in water striders appears to be primarily of terrestrial origin, and of aquatic origin for the other two species.
- OPEN ACCESSWith increasing input of neurotoxic mercury to environments as a result of anthropogenic activity, it has become imperative to examine how mercury may enter biotic systems through its methylation to bioavailable forms in aquatic environments. Recent development of stable isotope-based methods in methylation studies has enabled a better understanding of the factors controlling methylation in aquatic systems. In addition, the identification and tracking of the hgcAB gene cluster, which is necessary for methylation, has broadened the range of known methylators and methylation-conducive environments. Study of abiotic factors in methylation with new molecular methods (the use of stable isotopes and genomic methods) has helped elucidate the confounding influences of many environmental factors, as these methods enable the examination of their direct effects instead of merely correlative observations. Such developments will be helpful in the finer characterization of mercury biogeochemical cycles, which will enable better predictions of the potential effects of climate change on mercury methylation in aquatic systems and, by extension, the threat this may pose to biota.
- OPEN ACCESSWe examine the importance of the rock weathering feedback mechanism during the last deglacial period (∼16 000–4000 BCE) using an Earth system model of intermediate complexity (the University of Victoria Earth System Climate Model (UVic ESCM)) with four box-model parameterizations of terrestrial weathering. The deglacial climate change is driven by changes in orbital parameters, ice core reconstructions of atmospheric CO2 variability, and prescribed removal of continental ice sheets. Over the course of the 12 000 year simulation period, increases in weathering provide a mechanism that slowly removes CO2 from the atmosphere, in opposition to the observed atmospheric CO2 increase during this period. These processes transfer both carbon and alkalinity to the ocean, the combination of which results in as much as a 1000 Pg C increase in total ocean carbon, relative to a control simulation with constant weathering. However, the rapid expansion of northern hemisphere vegetation introduces a significant uncertainty among the weathering parameterizations. Further experiments to test the individual impacts of weathering dissolved inorganic carbon and alkalinity fluxes on ocean biogeochemistry suggest that the worldwide distribution of rock types and the ratio of carbonate to silicate weathering may be crucially important in obtaining an accurate estimate of changes in global weathering rates.
- OPEN ACCESSTadpoles are important prey items for many aquatic organisms and often represent the largest vertebrate biomass in many fishless wetland ecosystems. Neurotoxic mercury (Hg) can, at elevated levels, decrease growth, lower survival, and cause developmental instability in amphibians. We compared total Hg (THg) body burden and concentration in boreal chorus frog (Pseudacris maculata) and wood frog (Rana sylvatica) tadpoles. Overall, body burden and concentration were lower in boreal chorus frog tadpoles than wood frog tadpoles, as expected, because boreal chorus frog tadpoles consume at lower trophic levels. The variables species, stage, and mass explained 21% of total variation for body burden in our models but had negligible predictive ability for THg concentration. The vast majority of the remaining variation in both body burden and THg concentration was attributable to differences among ponds; tadpoles from ponds in three areas had considerably higher THg body burden and concentration. The pond-to-pond differences were not related to any water chemistry or physical parameter measured, and we assumed that differences in wetland geomorphology likely played an important role in determining Hg levels in tadpoles. This is the first report of Hg in frog tadpoles in the Prairie Pothole Region of North America.
- OPEN ACCESSOceanic circulation patterns shape both the distribution of species and spatial patterns of intraspecific genetic variation by influencing passively dispersed marine invertebrates. In the northwest Atlantic, strong and consistent currents at the mouth of the Bay of Fundy are expected to restrict dispersal in this region, but the relationship between populations of high dispersal species along the surrounding coastal regions has been largely underrepresented in the phylogeographic literature. We analyzed phylogeographic patterns in two intertidal invertebrates with high dispersal abilities, Tritia obsoleta (Mollusca: Gastropoda) and Macoma petalum (Mollusca: Bivalvia), between Cape Cod and the Gulf of St. Lawrence using mitochondrial DNA (mtDNA). Hierarchical analysis of molecular variance revealed population structuring among regions defined by circulation patterns, highly divergent lineages within M. petalum, and strong concordant genetic subdivision in both species between the Bay of Fundy and Gulf of Maine. Our results suggest that the gyre at the mouth of the bay is influential in restricting alongshore dispersal, allowing genetic divergence between regions to arise through genetic drift. These findings are concordant with biogeographic and phylogeographic studies of other marine organisms, suggesting that the genetic isolation of widely distributed species may be a common feature of intertidal invertebrate communities in the Bay of Fundy.
- OPEN ACCESSAn ordinary differential equation describing the transverse profiles of U-shaped glacial valleys has two formal analogies, which we explore in detail, bridging these different areas of research. First, an analogy with point particle mechanics completes the description of the solutions. Second, an analogy with the Friedmann equation of relativistic cosmology shows that the analogue of a glacial valley profile is a universe with a future singularity of interest in theoretical models of cosmology. A Big Freeze singularity, which was not previously observed for positive curvature index, is also contained in the dynamics.
- OPEN ACCESSOften the Before-After-Control-Impact (BACI) design is suggested as being a statistically powerful experimental design in environmental impact studies. If the timing and location of the impact are known and adequate pre-data are collected, the BACI design is considered optimal to help isolate the effect of the development from natural variability. This paper presents 9 years of results from a long-term BACI experiment tested using a range of statistical models and post-impact monitoring designs. To explore suboptimal designs that are often utilized in environmental effects monitoring, the same data were also explored assuming either no control system was available (Before-After only), or that no pre-impact data were available (Control-Impact only). The results of the BACI design were robust to the statistical model used, and the BACI design was able to detect effects from the impact that the two suboptimal designs failed to detect. However, the BACI design demonstrated different conclusions depending on the number and configuration of post-impact years included in the analysis. Our results reinforce the idea that caution should be employed when using, or interpreting results from, a BACI design in an environmental impact study, but demonstrate that a well-designed BACI remains one of the best models for environmental effects monitoring programs.
- OPEN ACCESSAmmonium deposition at the International Institute for Sustainable Development Experimental Lakes Area (IISD–ELA), in northwestern Ontario, Canada, has doubled in the last 45 years and thus is no longer among the low nitrogen (N) deposition sites in North America. This may be related to the concurrent intensification of Manitoba agriculture to the west and upwind of the ELA. Large increases in ammonium deposition at the ELA were important in driving the observed trend and increased the NH4 + to NO3 − ratio of input to aquatic and terrestrial systems. Stable isotope analyses of two years of bulk (wet and dry) atmospheric deposition revealed very large ranges in δ15N−NH4 + (22‰ range), δ15N−NO3 − (18‰), and δ18O–NO3 − (19‰). Few other δ15N−NH4 +, δ15N−NO3 −, and δ18O–NO3 − values have been published for Canadian precipitation. Increases in δ15N of NH4 + and NO3 − in July occurred with increases in total N deposition. The wide range and seasonal trends of δ15N and δ18O values in ELA precipitation mean that studies characterizing N inputs to watersheds and lakes require an ongoing and comprehensive annual sampling regime. Global trends of declining δ15N of N deposition evident in lake sediment records may be a result of increases in NH4 + deposition with lower δ15N−NH4 + values. Similarly, the relationship in Lake Superior between increasing NO3 − and lower δ15N−NO3 − values may be explained by increased atmospheric deposition of N with low δ15N values.
- OPEN ACCESSA reliable marker of early coral response to environmental stressors can help guide decision-making to mitigate global coral reef decline by detecting problems before the development of clinically observable disease. We document the accumulation of acrylic acid in two divergent coral taxa, stony small polyp coral (Acropora sp.) and soft coral (Lobophytum sp.), in response to deteriorating water quality characterized by moderately increased ammonia (0.25 ppm) and phosphate (0.15 ppm) concentrations and decreased calcium (360 ppm) concentration, using nuclear magnetic resonance spectroscopy (NMR)-based metabolomic techniques. Changes in acrylic acid concentration in polyp tissues free of zooxanthellae suggest that acrylic acid could be a product of animal metabolism and not exclusively a metabolic by-product of the osmolyte dimethylsulfoniopropionate (DMSP) in marine algae or bacteria. Our findings build on previously documented depletions of acrylic acid in wild coral potentially correlated to temperature stress and provide additional insight into approaches to further characterize the nature of the metabolic accumulation of acrylic acid under controlled experimental conditions.
- OPEN ACCESSMicroplastic pollution is prevalent in the Ottawa River, with all open water samples (n = 62) and sediment samples (n = 10) containing microplastics. The median microplastic concentration of nearshore 100 L water samples was 0.1 fragments per L (ranged between 0.05 and 0.24 fragments per L). The larger volume Manta trawls samples taken in the middle of the Ottawa River had an overall mean concentration of plastics of 1.35 fragments per m3. Plastic concentrations were significantly higher downstream of the wastewater treatment plant (1.99 fragments per m3) compared with upstream of the effluent output (0.71 fragments per m3), suggesting that the effluent plume is a pathway for plastic pollution to the Ottawa River. The mean concentration of microplastic fragments recovered in the sediment samples was 0.22 fragments per g dry weight. The abundance of microplastics in the sediment was not significantly related to the mean particle size or the organic content of the sediment. The most common form of plastic particles found was microfibers. These made up between 70% and 100% of all plastic particles observed, although plastic microbeads and secondary plastic fragments were also recovered.
- OPEN ACCESSOrnithomimid material from the Belly River Group (Campanian) of Alberta, Canada is described as sharing characters with Qiupalong henanensis from the Qiupa Formation of Henan Province, China. Derived characters and character combinations of the pubis and astragalocalcaneum were previously used to diagnose Q. henanensis and support the referral of this material to Qiupalong sp., representing the first known occurrences of Qiupalong outside of China. Qiupalong is the sixth ornithomimid taxon to be reported from the Dinosaur Park Formation and the first ornithomimid genus with a transcontinental distribution. The Alberta material represents the oldest known occurrences of Qiupalong, and a reconsideration of character evidence suggests that this genus is phylogenetically nested within other North American ornithomimids. A North American origin for Qiupalong and subsequent dispersal to Asia is proposed.
- OPEN ACCESSThe identification of sustainably managed fisheries is problematic for marketers and consumers of Pacific salmon food products owing to lack of well-defined and robust criteria that take into account current ecosystem science of salmon. We present the rationale for an alternative conceptual framework for salmon management that supports the development of sustainable sourcing criteria. Our approach contrasts with current large-scale fisheries certification programs such as that of the Marine Stewardship Council (MSC) and general consumer recommendation services such as Monterey Bay Aquarium’s Seafood Watch (SFW) program. Our framework is based on the “place-based” character of salmon populations and recognition of fundamental aspects of salmon ecology, particularly the evolution of population life histories that are locally adapted to freshwater spawning and rearing habitats. We describe how this framework underpins development of science-based sourcing criteria and how it differs in important respects from the industrial approach that historically and currently is the basis for most salmon management. We conclude with a discussion of how the framework and its application may provide a model for redirecting salmon management, in general, towards a more science- and place-based approach and why that is likely to be sustainable in the long term in a way that most contemporary salmon management is not.
- OPEN ACCESS
- Dewey W. Dunnington,
- Hilary White,
- Ian S. Spooner,
- Mark L. Mallory,
- Chris White,
- Nelson J. O’Driscoll, and
- Nic R. McLellan
We used a paleolimnological approach at Long Lake, Nova Scotia, to construct a 10 500-year record of metal deposition in lakebed sediments and elucidate the influence of both natural and anthropogenic environmental changes. Aquatic sediment concentrations of mercury (Hg), arsenic (As), and chromium (Cr) in Long Lake fluctuated substantially and, during some periods, exceeded guidelines for the protection of aquatic life. Increases in lead (Pb), Hg, Cr, trace metals, and nitrogen stable isotopes (δ15N) were broadly coincident with a period of widespread drying from ca. 8000 to 4000 cal BP and were likely a consequence of regional fires. From ca. 4000 cal BP until 1700 AD, metal levels in general were low due to decreased erosion, increased precipitation, and reduced fire activity. Water level lowering and forced sediment aggradation (tiding) in the 1800s led to increases in minerogenic Pb and Cr, though fossil fuel combustion also likely contributed to total Pb concentrations. Stratigraphic proxies indicated increased inorganic sedimentation rates, and reduced autochthonous productivity were coincident with lower Hg and As concentrations in the Long Lake sediment. Our data indicate that natural phenomena (fire) can result in sediment contaminant exceedances, that most metals have multiple sources, and that both human-induced disturbance and emissions have contributed to Pb contamination in the last 200 years. In addition, wetter and generally cooler climate appeared to favour lower concentrations of contaminants in lake sediments. Although wetland sediments in the Cumberland Basin Marshes are not heavily polluted with metals, the development of constructed wetlands and the disruption of aquatic sediments have the potential to concentrate, mobilize, and increase the bioavailability of metals. - OPEN ACCESSLife history theory predicts selection for higher reproductive investment in response to increased mortality among mature individuals. We tested this prediction over the period from 1978 to 2013 for three populations of Atlantic cod (Gadus morhua) off Newfoundland. These populations were heavily fished for a long period. We considered changes in standardized gonad weight as a proxy for changes in gonadal investment. We accounted for the allometry between gonad and body weight, individual body condition, water temperature, and potential spatial and density-dependent effects. Males display significant temporal trends in gonadal investment in all populations; in agreement with theoretical predictions, these trends show increased gonadal investments during the earlier part of the time series when mortality was high, with the trends leveling off or reversing after the later imposition of fishing moratoria. In contrast, females display patterns that are less consistent and expected; significant trends are detected only when accounting for density-dependent effects, with females in two populations unexpectedly showing a long-term decline in gonadal investment. Our results support the hypothesis that fisheries-induced evolution has occurred in gonadal investment in males, but not in females, and suggest that gonadal investment is more important for male reproductive success than expected in this lekking species.
- OPEN ACCESSMicroplastics are defined as any plastic with a diameter ≤5 mm. Problems associated with these plastics such as contamination of both marine and freshwater environments and ingestion by aquatic organisms are of increasing concern. Our study quantifies the number of microplastics in a prairie creek immediately downstream of Regina, Saskatchewan, Canada. Water samples and five species of fish were collected from sample sites upstream and downstream of a wastewater treatment plant (WWTP) in the summers of 2015 and 2016. Samples were digested in either a Fe(II)/H2O2 or NaClO solution and observed under a microscope where plastics present were enumerated by colour and type. At least one microplastic was detected in 73.5% of fish and 95.6% of water samples, showing that the creek does, in fact, contain microplastics. Concentrations were higher in water from upstream sites, likely due to dilution of creek water by the release of treated effluent. The results of this study provide baseline conditions for the presence of plastics in the creek prior to a major upgrade of the WWTP scheduled for completion in 2016.
- OPEN ACCESSThere has been a significant increase in the rate of felt earthquakes in western Alberta and eastern British Columbia, which has been associated with hydraulic fracturing and wastewater disposal. The increased rate of seismicity and the potential for localized strong ground motions from very shallow events poses an increased hazard to critical infrastructure such as major dams—particularly for older high-consequence structures. This paper overviews the factors that affect the likelihood of damaging ground motions and examines their implications for hazard assessment and mitigation. A strategy aimed at reducing the likelihood of potentially damaging ground motions to achieve probabilistic targets for critical facilities is developed, comprising elements of both mitigation and avoidance. For critical facilities, an effective strategy includes (i) an exclusion zone having a radius of ∼5 km; and (ii) a monitoring-and-response protocol to track the rate of events at the M > 2 level within 25 km, with adjustment of operational practices if required. An exclusion zone provides a deterministic safety margin to ensure the integrity of those few facilities for which failure consequences are unacceptable. Real-time monitoring tied to a response protocol can be used to control the rate of significant events and thereby limit the hazard more broadly.