Applied Filters
- Marine and Aquatic Sciences
- FACETSRemove filter
Topics
- Earth and Environmental Sciences107
- Integrative Sciences44
- Biological and Life Sciences35
- Conservation and Sustainability31
- Ecology and Evolution28
- Geosciences8
- Science and Policy8
- Biomedical and Health Sciences4
- Science and Society4
- Zoology4
- Genetics and Genomics3
- Atmospheric and Climate Sciences2
- Chemistry2
- Clinical Sciences2
- Epidemiology2
- Physical Sciences2
- Science Communication1
Publication Date
Author
- Lotze, Heike K4
- Rochman, Chelsea M4
- Boyce, Daniel G3
- Cheung, William W L3
- Corcoran, Patricia L3
- Hall, Britt D3
- Miller, Kristina M3
- Orihel, Diane M3
- Rubidge, Emily M3
- Tabata, Amy3
- Vermaire, Jesse C3
- Atlas, William I2
- Ban, Natalie C2
- Bernstein, Sarah2
- Blanchard, Julia L2
- Bryndum-Buchholz, Andrea2
- Burd, Brenda J2
- Chan, Hing Man2
- Coffin, Michael R S2
- Cooke, Steven J2
- Courtenay, Simon C2
- Fuller, Susanna D2
- Headley, John V2
- Housty, William G2
- Huntington, Aimee2
Access Type
1 - 20of107
Save this search
Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Filters
You do not have any saved searches
- OPEN ACCESSClimate change threatens marine ecosystems with known effects on marine life, including changes in metabolic rates, survival, and community structure. Based on a structured literature review, we developed a conceptual “pathways of effects” model that summarizes how three stressors associated with climate change (warming, acidification, and storms) affect functional species groups on the West Coast of Vancouver Island, Canada. We identified 155 distinct pathways from the three stressors through 12 categories of biological effects ranging from changes in the biochemistry of individual organisms to effects on community composition. Most species groups were affected by several climate stressors and via many pathways, although individual studies generally considered only a small fraction of relevant pathways. These effects depended on the species of interest and geographical location, highlighting the importance of local research. Climate change stressors exert complex, sometimes contradictory effects that vary across ecological scales. For example, some stressors that adversely affected a species in laboratory studies appeared beneficial in community-scale field studies. Pathways of effects models are helpful tools to summarize scientific studies across ecological scales. Compiling them in standardized databases would allow researchers and practitioners to search across species and regions to better support ecosystem-based management and environmental impact assessment.
- OPEN ACCESSWalleye/ogaa (Sander vitreus (Mitchill)) (hereafter, walleye; ogaa = Ojibwe translation) populations have historically supported important multi-use, harvest-oriented fisheries. Despite intensive management, walleye populations have declined in the midwestern United States raising concerns about the sustainability of the species. Numerous factors have been implicated in walleye population declines, including climate change, habitat loss, invasive species, species-interactions, production overharvest (i.e., harvest consistently exceeding annual production), and changing angler behaviors. These factors have negatively influenced natural recruitment and contributed to depensatory recruitment dynamics. I provide a review and perspective suggesting that the current trajectory of walleye populations is at or nearing an ecological tipping point. Although fish populations are often considered compensatory (i.e., negatively density-dependent), current walleye populations appear prone to depensation (i.e., positive density dependence). My review and perspective suggest that a compensatory management perspective for walleye is misaligned. A change in management towards a depensatory resource focus using ecosystem-based fisheries management and the recognition of walleye fisheries as social–ecological systems is needed for conservation. If compensatory management ensues, walleye persistence will likely be further threatened because many drivers of change are outside of managerial control, and those commonly used within managerial control have seemingly been ineffective for sustaining or rehabilitating naturally reproducing walleye populations.
- OPEN ACCESS
- Graham Epstein,
- Susanna D. Fuller,
- Sophia C. Johannessen,
- Emily M. Rubidge,
- Melissa Turner, and
- Julia K. Baum
Marine conserved areas (MCAs) can provide a range of ecological and socio-economic benefits, including climate change mitigation from the protection and enhancement of natural carbon storage. Canada's MCA network is expanding to encompass 30% of its Exclusive Economic Zone by 2030. At present, the network aims to integrate climate change mitigation by protecting coastal vegetated blue carbon ecosystems (saltmarsh, seagrass, kelp). Here, we argue that incorporating unvegetated seabed sediments could bring similar benefits. Seabed sediments can store and/or accumulate high densities of organic carbon, and due to their large spatial extent, contain carbon stores orders of magnitude larger than coastal vegetated habitats. We estimate that currently designated MCAs encompass only 10.8% of Canada's seabed sediment organic carbon stocks on the continental margin, and only 13.4% of areas with high carbon densities. Proposed MCAs would cover an additional 8.8% and 6.1% of total stocks and high carbon areas, respectively. We identify an additional set of high-priority seabed areas for future research and potential protection, ranking their importance based on carbon stocks, proxies for lability, and ecological/biological significance. The incorporation of seabed sediments into MCA networks could support climate change mitigation by preventing future releases of stored carbon. - OPEN ACCESS
- Wesley J. Glisson,
- Michelle Nault,
- Chris Jurek,
- Eric Fischer,
- Keegan Lund,
- Kylie Bloodsworth Cattoor,
- April Londo,
- Nicole Kovar,
- Emelia Hauck-Jacobs,
- Rod Egdell,
- Steve McComas,
- Eric Fieldseth, and
- Daniel J. Larkin
Nitellopsis obtusa (starry stonewort) is an invasive macroalga subject to substantial control efforts in the Midwestern United States; however, there has not been systematic evaluation of treatment effectiveness. We synthesized management approaches and outcomes using monitoring performed over a decade-long period across 38 lakes in Indiana, Wisconsin, and Minnesota. Copper-based algaecide treatments were the primary means of control, followed by physical removal methods or combination treatments. Control efforts and associated monitoring data varied by spatial scale, as did surveyors’ N. obtusa sampling methods. At the largest (whole-lake) scale, we found no evidence that algaecide treatments were slowing expansion or reducing abundance of N. obtusa within infested lakes. At smaller, within-lake scales, we found that algaecide and physical treatments could reduce N. obtusa frequency and biomass, but outcomes were highly variable. At the smallest scales, hand pulling was an effective containment strategy for small, localized populations that were detected early. These results highlight the need to set realistic goals for N. obtusa control and develop improved management techniques. There were also critical gaps in monitoring that limited our ability to evaluate treatment effectiveness. In particular, increased monitoring of unmanaged reference lakes and untreated areas within managed lakes is needed. - OPEN ACCESS
- Stephanie Graves,
- Shao-Min Chen,
- Rachel McNamee,
- Tazi H. Rodrigues,
- Brian Hayden,
- Chelsea M. Rochman,
- Jennifer F. Provencher,
- Michael D. Rennie,
- Daniel Layton-Matthews,
- Matthew Leybourne,
- Owen A. Sherwood, and
- Diane M. Orihel
Microplastics degrade slowly over time, leaching carbon (C) that could be subsequently incorporated into aquatic food webs. Current estimates of microplastic degradation vary, and little is known about microplastic-derived C fate under natural environmental conditions. To investigate whether microplastics leach C that is subsequently incorporated into aquatic food webs, we added isotopically enriched microplastics to Lake 378 at the Experimental Lakes Area in Ontario, Canada. In an ∼1100 L limnocorral (in situ open-bottom enclosure), we added 99% 13C-labelled polystyrene (8–216 µm in longest dimension) at a nominal concentration of 3268 particles/L. A second limnocorral without microplastics served as a negative control. Monthly measurements of δ13C-DIC and δ13C-DOC in filtered water revealed no detectable leaching of 13C from the plastic. Compound-specific isotope analysis of δ13C in amino acids of bulk plankton and periphyton revealed a slight (0.5‰) enrichment in 13C, within the range of natural variability for these organisms. Under the natural conditions of temperate oligotrophic lakes, degradation of microplastics is likely a very slow process that was not possible to detect in this 4-month experiment. Future studies should focus on assessing degradation of microplastics under realistic field scenarios to improve estimates of degradation pathways and associated time scales. - OPEN ACCESS
- Jessie S. Reynolds,
- Chris K. Elvidge,
- Ian J. Vander Meulen,
- Caleb T. Hasler,
- Richard A. Frank,
- John V. Headley,
- L. Mark Hewitt, and
- Diane M. Orihel
We evaluated whether naphthenic acid fraction compounds (NAFCs) extracted from oil sand tailings adversely affect fish survival and behaviour. Following a before–after-control-impact design, we housed wild-caught juvenile yellow perch (Perca flavescens) in outdoor mesocosms to assess survival and behaviour under baseline conditions, then exposed fish to one of three treatments: negative control, 2 mg/L NAFC, or 15 mg/L NAFC. We performed behavioural assays (no-stimulus activity, food stimulus, and predator stimulus using a model bird) and assessed a comprehensive suite of endpoints (equilibrium losses, activity, shoaling, burst swimming, freezing, and space use). We found that exposure to 15 mg/L NAFCs substantially reduced fish survival and impaired fish equilibrium in all three behavioural tests. Furthermore, exposure to NAFCs impaired anti-predator behaviour: while the activity of control fish increased by two-fold in response to a predator stimulus, fish exposed to 2 or 15 mg/L NAFC did not change their activity levels after stimulation. No significant changes were observed in other behavioural endpoints. Overall, our findings suggest that a week-long exposure to NAFCs at concentrations commonly found in tailings ponds, constructed wetlands, and other mining-impacted waters may affect multiple facets of fish behaviour that could ultimately lead to reduced fitness in fish populations. - OPEN ACCESSDocumented plastic pollution throughout the Laurentian Great Lakes system prompted investigation of microplastics (MPs) in sediment cores. We examined offshore sediment cores from Lake Huron (LH43) and Lake Ontario (403A) to understand temporal trends and changes in microplastic (MP) pollution in the size range 53 µm to 2 mm. MP abundances varied from 18.1 to 280.1 particles per g of dry weight sediment (N g−1 dw) in LH43, and 8.2–488.4 g−1 dw in core 403A. The 15 cm cores are equivalent to 56 years of accumulation in Lake Huron and 72 years of accumulation in Lake Ontario. Analysis of the two cores shows an increasing trend in MP accumulation from 1964 to 1989, which mirrors the global plastic production rate. Subsequent peaks and troughs in the MP abundance profiles reflect macroeconomic changes and regional controls. These results show how changing abundances of MPs in lake sediment cores can act as proxies for global perturbations in oil supply as well as national economic shifts.
- OPEN ACCESSHistorical gold mining operations between the 1860s and 1940s have left substantial quantities of arsenic- and mercury-rich tailings near abandoned mines in remote and urban areas of Nova Scotia, Canada. Large amounts of materials from the tailings have entered the surface waters of downstream aquatic ecosystems at concentrations that present a risk to benthos. We used paleolimnological approaches to examine long-term trends in sedimentary metal(loid) concentrations, assess potential sediment toxicity, and determine if geochemical recovery has occurred at four lakes located downstream of three productive gold-mining districts. During the historical mining era, sedimentary total arsenic and mercury concentrations and enrichment factors increased substantially at all downstream lakes that received inputs from tailings. Similarly, chromium, lead, and zinc concentrations increased in the sediments after mining activities began and the urbanization that followed. The calculated probable effects of concentration quotients (PEC-Qs) for sediments exceeded the probable biological effects threshold (PEC-Q > 2) during the mining era. Although sedimentary metal(loid) concentrations have decreased for most elements in recent sediments, relatively higher PEC-Q and continued exceedance of Canadian Interim Sediment Quality Guidelines suggest that complete geochemical recovery has not occurred. It is likely that surface runoff from tailing fields, urbanization, and climate-mediated changes are impacting geochemical recovery trajectories.
- OPEN ACCESS
- D.T. Enright,
- P. Comeau, and
- D.M. Gillis
We used isodars, developed from the ideal free distribution (IFD), to predict the distribution of fishing effort across regulatory boundaries in the south-western Scotian Shelf’s haddock fishery. Our analysis was focused around the boundary between Northwest Atlantic Fisheries Organization’s Divisions 4X and 5Z. While effort within 4X was related to the standardized catch value and effort experienced along the 4X–5Z boundary, most effort predictions across the boundary were also accurate. Accuracy of these cross-boundary isodars suggests that a high degree of movement across the boundary meets the IFD assumption of free movement and thus, effort on one side of the boundary is related to fishing success on the other side of the boundary. Fisheries management strategies should adopt a broad view that encompasses adjacent regulatory regions to understand where vessels may choose to fish when multiple regulatory regions are accessible. In fisheries where isodars describe effort distributions across a regulatory boundary, the relative abundance of the underlying fish population could be better indicated by effort distribution among regulatory regions than by catch rates. - OPEN ACCESS
- John Chételat,
- Joel P. Heath,
- Lucassie Arragutainaq,
- John Lameboy,
- Christine McClelland, and
- Raymond Mickpegak
Spatial patterns of bioaccumulated mercury were evaluated in coastal marine food webs of east Hudson Bay and east James Bay in the boreal subarctic of Canada. Two marine species, blue mussels (Mytilus edulis) and common eider ducks (Somateria mollissima) that consume mussels, were collected by a regional community-based monitoring network established in five communities. Stable isotope tracers (carbon, nitrogen, sulfur, and mercury) were measured to evaluate environmental drivers of mercury spatial patterns. Mercury concentrations of blue mussels and common eiders were twofold and fivefold higher, respectively, on the James Bay coast near the community of Chisasibi compared to sites in east Hudson Bay. Liver and muscle mercury concentrations of eiders from James Bay are among the highest values reported for the circumpolar subarctic and Arctic. Multiple lines of evidence (mercury spatial patterns, crustal elements in blue mussels, and mercury isotope values of common eiders) suggest elevated mercury in the coastal food web of east James Bay may be due to mercury loading from the La Grande River, which drains one of the largest hydroelectric developments in the world. These findings highlight the importance of further research on environmental processes linking large rivers to mercury bioaccumulation in northern coastal food webs. - OPEN ACCESSMarine protected areas (MPAs) are critical in safeguarding biodiversity and ecosystem functions under climate change. The long-term effectiveness of these static conservation measures will depend on how well they represent current and future ocean changes. Here, we use the Climate Risk Index for Biodiversity to assess the vulnerability representation of marine ecosystems within the Canadian marine conservation network (CMCN) under two divergent emissions scenarios. We found that MPAs best represent climate vulnerability in Atlantic Canada (85% representativity overall, and 93% in the Gulf of Saint Lawrence under low emissions), followed by the Pacific (78%) and Arctic (63%; lowest in the Eastern Arctic (41% under high emissions) regions). Notably, MPAs with lower climate vulnerability are proportionally overrepresented in the CMCN. Broad-scale geographic targets employed in the Scotian Shelf-Bay of Fundy network planning process achieve over 90% representativity of climate vulnerabilities, underscoring the importance of ensuring habitat representativity and geographic distribution in conservation planning to enhance climate resilience, even if not explicitly prioritized. Moving towards Canada’s target to protect 30% of its waters by 2030, prioritizing representativity and designation of MPAs in currently underrepresented climate-vulnerable regions may be crucial to enhancing the resilience of the CMCN amidst an ever-changing climate.
- OPEN ACCESS
- Emily M. Rubidge,
- Carrie K. Robb,
- Patrick L. Thompson,
- Chris McDougall,
- Karin M. Bodtker,
- Katie S.P. Gale,
- Stephen Ban,
- Kil Hltaanuwaay Tayler Brown,
- Vicki Sahanatien,
- Sachiko Ouchi,
- Sarah K. Friesen,
- Natalie C. Ban,
- Karen L. Hunter,
- Angelica Pena,
- Amber Holdsworth, and
- Rebecca Martone
Marine protected area (MPAs) networks can buffer marine ecosystems from the impacts of climate change by allowing species to redistribute as conditions change and by reducing other stressors. There are, however, few examples where climate change has been considered in MPA network design. In this paper, we assess how climate change considerations were integrated into the design of a newly released MPA network in the Northern Shelf Bioregion in British Columbia, Canada, and then evaluate the resulting network against projected physical and biogeochemical changes and biological responses. We found that representation, replication, and size and spacing recommendations integrated into the design phase were met in most cases. Furthermore, despite varying degrees of projected changes in temperature, dissolved oxygen, and aragonite saturation across the MPA network, suitable habitat for demersal fish species is projected to remain in the network despite some redistribution among sites. We also found that mid-depth MPAs are particularly important for persistence, as fish are projected to move deeper to avoid warming in shallower areas. Our results highlight that a representative MPA network with adequate replication, that incorporates areas of varying climate change trajectory, should buffer against the impacts of climate change. - OPEN ACCESS
- Dylan Hillis,
- Kristina M. Barclay,
- Erin Foster,
- Hannah M. Kobluk,
- Taylor Vollman,
- Anne K. Salomon,
- Chris T. Darimont, and
- Iain McKechnie
Shellfish have supported Indigenous lifeways on the Pacific Coast of North America for millennia. Despite the ubiquity of clamshells in archaeological sites, shell size measurements are rarely reported due to a lack of applicable basis for generating size estimates from fragmentary remains. We present a linear regression-based method for determining shell length from hinge and umbo measurements of littleneck (Leukoma staminea; n = 239), butter (Saxidomus gigantea; n = 274), and horse (Tresus nuttallii; n = 92) clams using both contemporary and archaeological shells collected from three regions in coastal British Columbia, Canada. We examine the accuracy of these size estimations, which indicate that 83%–97% of the variability in dorsal shell length is predicted by umbo thickness and hinge length. Hinge length generated higher R2 values yet exhibited greater intra- and inter-observer error. While the predicted dorsal length for each species differed by region, this size difference was smaller than intra- and inter-observer error, suggesting broad applicability for these simple measurements. We applied these formulae to a Tseshaht First Nation archaeological clamshell assemblage (n = 488) on western Vancouver Island spanning 3000 years and observed profiles that resemble contemporary legal size limits, which suggests the sustained use and maintenance of local shellfisheries. The accuracy of these regression models for determining shell length from fragments highlights the utility of this approach as a basis for assessing past shellfish management practices. - OPEN ACCESSShallow ponds can provide ideal conditions for production of greenhouse gases (GHGs) carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), and thus are important to include in global and regional GHG budgets. The Canadian Prairie Pothole Region contains millions of shallow natural ponds, and we investigated GHG dynamics in 145 ponds across the region. Ponds were consistently supersaturated with CH4, often supersaturated with CO2 (57% occurrence), and often undersaturated with N2O (65% occurrence). Spring measurements showed higher N2O saturation (p = 0.0037) than summer, while summer had higher CH4 (p < 0.001) and CO2 (p = 0.023) saturation than spring. Ponds exhibited large physicochemical variation, yet sulfate concentration and pH were strong predictors of dissolved CH4 and CO2, respectively. No predictor was identified for N2O. The link between sulfate and CH4 has important implications as dissolved CH4 in low sulfate (<178 mg L−1) systems was much more responsive to changes in temperature. This research fills an important knowledge gap about the GHG dynamics of prairie pothole ponds and the role of water chemistry for diffuse GHG release. Our work can also be used in ongoing efforts to describe ecosystem services (or disservices) assigned to ponds in this agriculture-dominated region.
- OPEN ACCESSClimate change presents challenges for marine area-based conservation measures through altered habitat and associated species range shifts. We conducted statistical downscaling for the eastern Canadian coastal domain over a range of global climate models, focusing on habitat suitability for Atlantic cod (Gadus morhua), a numerically depressed, but ecologically, economically, and culturally important species in this region. We examined cod egg survival, juvenile growth, and spawning habitat suitability, combining these into one habitat index to compare within-closure habitat suitability for multiple life stages through time. Areas of high cod egg habitat suitability are projected to shift northward and increase across all area closures studied, while optimum juvenile habitat shifts north and eastward, increasing in almost all closures except the south. Spawning habitat as a function of temperature and oxygen will likely decrease through time across the entire region, but less in northern locations. Overall cod habitat is forecasted to decline in the south of the region while increasing at central and northern latitudes, highlighting the importance of existing and developing northern shelf area closures. While warming will bring temperatures closer to optimum levels for cod in this cold-water system, oxygen limitation will become more prevalent in the south of the region and should be monitored as an important ocean health indicator.
- OPEN ACCESS
- Gretchen L. Lescord,
- Jennifer Simard,
- Thomas A. Johnston,
- Jacob Seguin,
- Claire E. Farrell,
- Nelson J. O'Driscoll, and
- Constance M. O'Connor
Water resource development can alter the movement and ecology of sturgeons. We studied total (THg) and methylmercury concentrations in whole blood sampled non-lethally from namew (Moose Cree L-dialect, lake sturgeon, Acipenser fulvescens), an endangered and culturally important subsistence fish. Namew were sampled from two tributaries within the Moose Cree Homeland: the Lower Mattagami River (an impacted system with four hydroelectric generating stations) and the North French River (a reference system that is free-flowing system with no development). Results indicated namew from the North French River had higher blood [THg] than those from the Mattagami River. Further modeling showed that trophic position was the primary driver of these differences, with North French namew having the highest nitrogen isotope ratios. Based on further isotope modeling, crayfish were major components of namew diet at all sites, while other prey items differed between sites. Specifically, namew with unobstructed access to the lower watershed had notably more enriched isotope values when compared to the freshwater benthic macroinvertebrates sampled, implying that other prey not captured herein may contribute to their diets and [THg]. Overall, we found differences in namew’s trophic ecology but no elevation in blood mercury levels at a site impacted by hydroelectric operations 60+ years post-impoundment. - OPEN ACCESSPathogen dispersal from infected aquaculture sites into the surrounding ocean poses risks of infection to wild and farmed species, but is difficult to predict. This study aimed to build a framework using an ocean circulation and a particle tracking model in conjunction with a dynamic infection model and a virus inactivation model to simulate the dispersal of the infectious salmon anemia virus (ISAV) from Atlantic salmon farms. Simulated particles were released from hypothetically infected farms and advected by modelled currents. Inactivation of viral cohorts by ambient ultraviolet radiation and natural microbial communities was simulated during advection. Simulations showed that ISAV concentration varied spatiotemporally with the progression of the outbreak, current speed and direction, tidal elevation amplitude, and environmental decay. Connectivity among aquaculture sites varied in relation to seaway distances, though simulations showed that connectivity can also be asymmetrical between farm sites. Sensitivity analyses showed that the dispersal of ISAV was moderately sensitive to uncertainty associated with the viral decay model, highlighting the importance of obtaining accurate estimates of inactivation rates of ISAV. This framework provides an approach to simulate waterborne viral transmission that considers the biology and epidemic features of significance for pathogens and the dynamic conditions of the ocean.
- OPEN ACCESSThe American lobster fishery is the most economically significant commercial fishery in Atlantic Canada and takes place in waters that are warming due to climate change. Lobster are poikilotherms that tolerate a wide range of seasonal temperatures with an optimal range of 12–18 °C. Lobster in the Canadian Maritimes may be naturally acclimated to a wide range of temperatures and thus, could have a wide range of thermal tolerance that may be distinct across regions. The present study used non-invasive open-source tools to explore differences in thermal tolerance in real time between geographically separated lobster populations from around the Canadian Maritimes. Lobsters were acquired from six lobster fishing areas in the Canadian Maritimes and acclimated to either warm (15 °C) or cold (5 °C) water for two weeks before the onset of thermal trials. Geographic origin was not a significant predictor of estimated thermal maximum, while acclimation temperature was a significant predictor. These results suggest that thermal tolerance is more strongly linked to acclimation temperature than to geographic region.
- OPEN ACCESSReintroduction is an important tool in the conservation and recovery of aquatic species at risk. However, components of the reintroduction process such as transportation have the potential to induce physiological stress and the extent to which preparatory techniques can mitigate this stress is poorly understood in small-bodied fishes. To address this concern, we studied the effect of transport on two fitness-related performance measures: maximum metabolic rate and thermal tolerance in redside dace (Clinostomus elongatus), an imperilled small-bodied stream fish native to eastern North America. Prior to transportation, we manipulated the body condition of redside dace over a 12-week period, by providing either low (1% of their total body mass) or high (2% of their total body mass) rations. The goal of this manipulation was to influence body condition, as higher body condition can enhance physiological performance. Subsequently, redside dace were transported for varying durations: 0, 3, and 6 h. Following transportation, we measured maximum metabolic rate (µmol/h) and thermal tolerance (CTmax, °C). Our results indicate that neither transport nor body condition had a significant effect on maximum metabolic rate or thermal tolerance (CTmax). These findings provide preliminary evidence that redside dace can physiologically tolerate transport based on the endpoints measured and this information may possibly be extended to other small-bodied fish, for which information is lacking.
- OPEN ACCESSThe Nooksack Dace (Rhinichthys cataractae sp. cataractae) is a federally endangered riffle specialist endemic to the lower Fraser Valley of British Columbia, Canada, with historic population declines associated with riffle loss from stream dredging, channelization, and excessive sediment inputs. To assess the effectiveness of riffle restoration as a recovery strategy, gravel and cobble riffles were constructed in two replicate tributaries of the Nooksack River as a before-after-control-impact experiment, measuring dace abundance, substrate composition, and invertebrate biomass before and one year after restoration. Nooksack Dace density increased significantly in cobble (but not gravel) treatments relative to control riffles. Dace abundance was strongly associated with increased availability of interstitial refuges rather than substrate effects on invertebrate prey abundance, suggesting that interstitial space limits adult dace abundance. Young-of-the-year dace were not observed in one of the two restored streams despite riffle restoration, indicating increased dace density due to aggregation in higher-quality restored riffles. This recruitment limitation indicates persistence of a population bottleneck at an early life history stage that is not addressed by successful restoration of adult riffle habitat.