Applied Filters
- Marine and Aquatic Sciences
Journal Title
Topics
- Earth and Environmental Sciences102
- Integrative Sciences42
- Biological and Life Sciences32
- Conservation and Sustainability29
- Ecology and Evolution25
- Geosciences8
- Science and Policy8
- Biomedical and Health Sciences4
- Science and Society4
- Zoology4
- Genetics and Genomics3
- Atmospheric and Climate Sciences2
- Chemistry2
- Clinical Sciences2
- Epidemiology2
- Physical Sciences2
- Science Communication1
Publication Date
Author
- Lotze, Heike K4
- Boyce, Daniel G3
- Cheung, William W L3
- Corcoran, Patricia L3
- Hall, Britt D3
- Miller, Kristina M3
- Rochman, Chelsea M3
- Tabata, Amy3
- Vermaire, Jesse C3
- Atlas, William I2
- Ban, Natalie C2
- Bernstein, Sarah2
- Blanchard, Julia L2
- Bryndum-Buchholz, Andrea2
- Burd, Brenda J2
- Chan, Hing Man2
- Coffin, Michael R S2
- Cooke, Steven J2
- Courtenay, Simon C2
- Headley, John V2
- Housty, William G2
- Huntington, Aimee2
- Jantunen, Liisa2
- Knysh, Kyle M2
- Li, Shaorong2
Access Type
81 - 100of102
Save this search
Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Filters
Search Name | Searched On |
---|---|
Subject Areas: Marine and Aquatic Sciences (102) | 30 Dec 2024 |
You do not have any saved searches
- OPEN ACCESSIn 2020, the COVID-19 pandemic interrupted all aspects of human activity, including environmental research and monitoring. Despite a lack of laboratory access and other restrictive measures, we adapted an existing community science monitoring program to continue through the summer of 2020. We worked with local community groups to recruit 58 volunteers who collected lake water samples from 60 sites on 16 lakes in south-central Ontario from June to September 2020. We organized drop-off depots and had volunteers freeze samples to monitor nearshore nutrients (phosphorus and nitrogen) and chlorophyll-a. A survey was distributed to volunteers to analyze lake-front property owners’ activities during the pandemic. We found spatial patterns in nearshore water quality across the lakes, with sub-watershed development being a significant predictor of nutrients and chlorophyll-a. Additionally, pre-pandemic (2019) and pandemic (2020 and 2021) nutrient concentrations were compared, but there was no clear impact of the pandemic on nearshore nutrient concentrations, despite changes in lake-front property owners activities. Overall, this study demonstrated the ability of community science to provide water quality data on a large spatial scale despite a major societal disruption, providing insight into regional nutrient trends during the first year of the pandemic.
- OPEN ACCESS
- Andrea Bryndum-Buchholz,
- Julia L. Blanchard,
- Marta Coll,
- Hubert Du Pontavice,
- Jason D. Everett,
- Jerome Guiet,
- Ryan F. Heneghan,
- Olivier Maury,
- Camilla Novaglio,
- Juliano Palacios-Abrantes,
- Colleen M. Petrik,
- Derek P. Tittensor, and
- Heike K. Lotze
Climate change is altering marine ecosystems across the globe and is projected to do so for centuries to come. Marine conservation agencies can use short- and long-term projections of species-specific or ecosystem-level climate responses to inform marine conservation planning. Yet, integration of climate change adaptation, mitigation, and resilience into marine conservation planning is limited. We analysed future trajectories of climate change impacts on total consumer biomass and six key physical and biogeochemical drivers across the Northwest Atlantic Ocean to evaluate the consequences for Marine Protected Areas (MPAs) and Other Effective area-based Conservation Measures (OECMs) in Atlantic Canada. We identified climate change hotspots and refugia, where the environmental drivers are projected to change most or remain close to their current state, respectively, by mid- and end-century. We used standardized outputs from the Fisheries and Marine Ecosystem Model Intercomparison Project and the 6th Coupled Model Intercomparison Project. Our analysis revealed that, currently, no existing marine conservation areas in Atlantic Canada overlap with identified climate refugia. Most (75%) established MPAs and more than one-third (39%) of the established OECMs lie within cumulative climate hotspots. Our results provide important long-term context for adaptation and future-proofing spatial marine conservation planning in Canada and the Northwest Atlantic region. - OPEN ACCESSAnthropogenic pressures, including urban and agricultural expansion, can negatively influence a lake's capacity to provide aquatic ecosystem services (ES). However, identifying lakes most at risk of losing their ES (i.e., higher vulnerability) requires integrating information on lake ecological state, global change threats, and ES use. Here, we provide a social–ecological framework that combines these features within a regional context by evaluating the ecological state of 659 lakes across Canada. Using the deviation of impacted lakes from reference ones, we identified much higher total nitrogen and chloride concentrations as the main indicators of an altered lake ecological state in all regions identified. Lake ecological state was mapped using an additive colour model along with regional scores of threat levels and recreational ES use. Urban and agriculturally developed areas were linked to higher lake vulnerability and ES loss. Lakes in Southern Ontario were most concerning, being highly altered, under threat, and heavily used. Lakes near coastal urban centers were altered and used, but less threatened, whereas those in the Prairies were altered and threatened, but less used. Our novel framework provides the first social–ecological geography of Canadian lakes, and is a promising tool to assess lake state and vulnerability at scales relevant for management.
- OPEN ACCESSDocumented plastic pollution throughout the Laurentian Great Lakes system prompted investigation of microplastics (MPs) in sediment cores. We examined offshore sediment cores from Lake Huron (LH43) and Lake Ontario (403A) to understand temporal trends and changes in microplastic (MP) pollution in the size range 53 µm to 2 mm. MP abundances varied from 18.1 to 280.1 particles per g of dry weight sediment (N g−1 dw) in LH43, and 8.2–488.4 g−1 dw in core 403A. The 15 cm cores are equivalent to 56 years of accumulation in Lake Huron and 72 years of accumulation in Lake Ontario. Analysis of the two cores shows an increasing trend in MP accumulation from 1964 to 1989, which mirrors the global plastic production rate. Subsequent peaks and troughs in the MP abundance profiles reflect macroeconomic changes and regional controls. These results show how changing abundances of MPs in lake sediment cores can act as proxies for global perturbations in oil supply as well as national economic shifts.
- OPEN ACCESSSince the beginning of its large-scale production in the early 20th century, plastics have remained an important material in widespread use throughout modern society. Nevertheless, despite possessing many benefits, plastics are resistant to degradation and instead accumulate in the ocean and terrestrial sediments, thereby potentially affecting marine and terrestrial ecosystems. Plastics release CO2 throughout their entire lifecycle; during the extraction of materials used in their production, through plastic–carbon leaching in the marine and terrestrial environment, and during their different end-of-life scenarios, which include recycling, landfill, and incineration. Here, we use the University of Victoria earth system climate model to quantity the effects on atmospheric CO2 and the ocean carbon cycle by using upper-bound estimates of carbon emissions from marine plastic–carbon leaching or land-based incineration. Despite the suggestions of some, our results indicate that it has only a very minor influence and an insignificant effect on the earth's global climate system. This holds even if plastic contamination increases well beyond current levels. On the other hand, carbon emissions associated with plastic production and incineration have a greater impact on climate while still dwarfed by emissions associated with the combustion of fossil fuels (coal, oil, and natural gas) and other anthropogenic sources. Our results have important policy implications for ongoing United Nations Environment Programme Intergovernmental Negotiating Committee on Plastic Pollution negotiations.
- OPEN ACCESSHistorical gold mining operations between the 1860s and 1940s have left substantial quantities of arsenic- and mercury-rich tailings near abandoned mines in remote and urban areas of Nova Scotia, Canada. Large amounts of materials from the tailings have entered the surface waters of downstream aquatic ecosystems at concentrations that present a risk to benthos. We used paleolimnological approaches to examine long-term trends in sedimentary metal(loid) concentrations, assess potential sediment toxicity, and determine if geochemical recovery has occurred at four lakes located downstream of three productive gold-mining districts. During the historical mining era, sedimentary total arsenic and mercury concentrations and enrichment factors increased substantially at all downstream lakes that received inputs from tailings. Similarly, chromium, lead, and zinc concentrations increased in the sediments after mining activities began and the urbanization that followed. The calculated probable effects of concentration quotients (PEC-Qs) for sediments exceeded the probable biological effects threshold (PEC-Q > 2) during the mining era. Although sedimentary metal(loid) concentrations have decreased for most elements in recent sediments, relatively higher PEC-Q and continued exceedance of Canadian Interim Sediment Quality Guidelines suggest that complete geochemical recovery has not occurred. It is likely that surface runoff from tailing fields, urbanization, and climate-mediated changes are impacting geochemical recovery trajectories.
- OPEN ACCESS
- D.T. Enright,
- P. Comeau, and
- D.M. Gillis
We used isodars, developed from the ideal free distribution (IFD), to predict the distribution of fishing effort across regulatory boundaries in the south-western Scotian Shelf’s haddock fishery. Our analysis was focused around the boundary between Northwest Atlantic Fisheries Organization’s Divisions 4X and 5Z. While effort within 4X was related to the standardized catch value and effort experienced along the 4X–5Z boundary, most effort predictions across the boundary were also accurate. Accuracy of these cross-boundary isodars suggests that a high degree of movement across the boundary meets the IFD assumption of free movement and thus, effort on one side of the boundary is related to fishing success on the other side of the boundary. Fisheries management strategies should adopt a broad view that encompasses adjacent regulatory regions to understand where vessels may choose to fish when multiple regulatory regions are accessible. In fisheries where isodars describe effort distributions across a regulatory boundary, the relative abundance of the underlying fish population could be better indicated by effort distribution among regulatory regions than by catch rates. - OPEN ACCESS
- John Chételat,
- Joel P. Heath,
- Lucassie Arragutainaq,
- John Lameboy,
- Christine McClelland, and
- Raymond Mickpegak
Spatial patterns of bioaccumulated mercury were evaluated in coastal marine food webs of east Hudson Bay and east James Bay in the boreal subarctic of Canada. Two marine species, blue mussels (Mytilus edulis) and common eider ducks (Somateria mollissima) that consume mussels, were collected by a regional community-based monitoring network established in five communities. Stable isotope tracers (carbon, nitrogen, sulfur, and mercury) were measured to evaluate environmental drivers of mercury spatial patterns. Mercury concentrations of blue mussels and common eiders were twofold and fivefold higher, respectively, on the James Bay coast near the community of Chisasibi compared to sites in east Hudson Bay. Liver and muscle mercury concentrations of eiders from James Bay are among the highest values reported for the circumpolar subarctic and Arctic. Multiple lines of evidence (mercury spatial patterns, crustal elements in blue mussels, and mercury isotope values of common eiders) suggest elevated mercury in the coastal food web of east James Bay may be due to mercury loading from the La Grande River, which drains one of the largest hydroelectric developments in the world. These findings highlight the importance of further research on environmental processes linking large rivers to mercury bioaccumulation in northern coastal food webs. - OPEN ACCESSMarine protected areas (MPAs) are critical in safeguarding biodiversity and ecosystem functions under climate change. The long-term effectiveness of these static conservation measures will depend on how well they represent current and future ocean changes. Here, we use the Climate Risk Index for Biodiversity to assess the vulnerability representation of marine ecosystems within the Canadian marine conservation network (CMCN) under two divergent emissions scenarios. We found that MPAs best represent climate vulnerability in Atlantic Canada (85% representativity overall, and 93% in the Gulf of Saint Lawrence under low emissions), followed by the Pacific (78%) and Arctic (63%; lowest in the Eastern Arctic (41% under high emissions) regions). Notably, MPAs with lower climate vulnerability are proportionally overrepresented in the CMCN. Broad-scale geographic targets employed in the Scotian Shelf-Bay of Fundy network planning process achieve over 90% representativity of climate vulnerabilities, underscoring the importance of ensuring habitat representativity and geographic distribution in conservation planning to enhance climate resilience, even if not explicitly prioritized. Moving towards Canada’s target to protect 30% of its waters by 2030, prioritizing representativity and designation of MPAs in currently underrepresented climate-vulnerable regions may be crucial to enhancing the resilience of the CMCN amidst an ever-changing climate.
- OPEN ACCESS
- Emily M. Rubidge,
- Carrie K. Robb,
- Patrick L. Thompson,
- Chris McDougall,
- Karin M. Bodtker,
- Katie S.P. Gale,
- Stephen Ban,
- Kil Hltaanuwaay Tayler Brown,
- Vicki Sahanatien,
- Sachiko Ouchi,
- Sarah K. Friesen,
- Natalie C. Ban,
- Karen L. Hunter,
- Angelica Pena,
- Amber Holdsworth, and
- Rebecca Martone
Marine protected area (MPAs) networks can buffer marine ecosystems from the impacts of climate change by allowing species to redistribute as conditions change and by reducing other stressors. There are, however, few examples where climate change has been considered in MPA network design. In this paper, we assess how climate change considerations were integrated into the design of a newly released MPA network in the Northern Shelf Bioregion in British Columbia, Canada, and then evaluate the resulting network against projected physical and biogeochemical changes and biological responses. We found that representation, replication, and size and spacing recommendations integrated into the design phase were met in most cases. Furthermore, despite varying degrees of projected changes in temperature, dissolved oxygen, and aragonite saturation across the MPA network, suitable habitat for demersal fish species is projected to remain in the network despite some redistribution among sites. We also found that mid-depth MPAs are particularly important for persistence, as fish are projected to move deeper to avoid warming in shallower areas. Our results highlight that a representative MPA network with adequate replication, that incorporates areas of varying climate change trajectory, should buffer against the impacts of climate change. - OPEN ACCESS
- Dylan Hillis,
- Kristina M. Barclay,
- Erin Foster,
- Hannah M. Kobluk,
- Taylor Vollman,
- Anne K. Salomon,
- Chris T. Darimont, and
- Iain McKechnie
Shellfish have supported Indigenous lifeways on the Pacific Coast of North America for millennia. Despite the ubiquity of clamshells in archaeological sites, shell size measurements are rarely reported due to a lack of applicable basis for generating size estimates from fragmentary remains. We present a linear regression-based method for determining shell length from hinge and umbo measurements of littleneck (Leukoma staminea; n = 239), butter (Saxidomus gigantea; n = 274), and horse (Tresus nuttallii; n = 92) clams using both contemporary and archaeological shells collected from three regions in coastal British Columbia, Canada. We examine the accuracy of these size estimations, which indicate that 83%–97% of the variability in dorsal shell length is predicted by umbo thickness and hinge length. Hinge length generated higher R2 values yet exhibited greater intra- and inter-observer error. While the predicted dorsal length for each species differed by region, this size difference was smaller than intra- and inter-observer error, suggesting broad applicability for these simple measurements. We applied these formulae to a Tseshaht First Nation archaeological clamshell assemblage (n = 488) on western Vancouver Island spanning 3000 years and observed profiles that resemble contemporary legal size limits, which suggests the sustained use and maintenance of local shellfisheries. The accuracy of these regression models for determining shell length from fragments highlights the utility of this approach as a basis for assessing past shellfish management practices. - OPEN ACCESSShallow ponds can provide ideal conditions for production of greenhouse gases (GHGs) carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), and thus are important to include in global and regional GHG budgets. The Canadian Prairie Pothole Region contains millions of shallow natural ponds, and we investigated GHG dynamics in 145 ponds across the region. Ponds were consistently supersaturated with CH4, often supersaturated with CO2 (57% occurrence), and often undersaturated with N2O (65% occurrence). Spring measurements showed higher N2O saturation (p = 0.0037) than summer, while summer had higher CH4 (p < 0.001) and CO2 (p = 0.023) saturation than spring. Ponds exhibited large physicochemical variation, yet sulfate concentration and pH were strong predictors of dissolved CH4 and CO2, respectively. No predictor was identified for N2O. The link between sulfate and CH4 has important implications as dissolved CH4 in low sulfate (<178 mg L−1) systems was much more responsive to changes in temperature. This research fills an important knowledge gap about the GHG dynamics of prairie pothole ponds and the role of water chemistry for diffuse GHG release. Our work can also be used in ongoing efforts to describe ecosystem services (or disservices) assigned to ponds in this agriculture-dominated region.
- OPEN ACCESSClimate change presents challenges for marine area-based conservation measures through altered habitat and associated species range shifts. We conducted statistical downscaling for the eastern Canadian coastal domain over a range of global climate models, focusing on habitat suitability for Atlantic cod (Gadus morhua), a numerically depressed, but ecologically, economically, and culturally important species in this region. We examined cod egg survival, juvenile growth, and spawning habitat suitability, combining these into one habitat index to compare within-closure habitat suitability for multiple life stages through time. Areas of high cod egg habitat suitability are projected to shift northward and increase across all area closures studied, while optimum juvenile habitat shifts north and eastward, increasing in almost all closures except the south. Spawning habitat as a function of temperature and oxygen will likely decrease through time across the entire region, but less in northern locations. Overall cod habitat is forecasted to decline in the south of the region while increasing at central and northern latitudes, highlighting the importance of existing and developing northern shelf area closures. While warming will bring temperatures closer to optimum levels for cod in this cold-water system, oxygen limitation will become more prevalent in the south of the region and should be monitored as an important ocean health indicator.
- OPEN ACCESS
- Gretchen L. Lescord,
- Jennifer Simard,
- Thomas A. Johnston,
- Jacob Seguin,
- Claire E. Farrell,
- Nelson J. O'Driscoll, and
- Constance M. O'Connor
Water resource development can alter the movement and ecology of sturgeons. We studied total (THg) and methylmercury concentrations in whole blood sampled non-lethally from namew (Moose Cree L-dialect, lake sturgeon, Acipenser fulvescens), an endangered and culturally important subsistence fish. Namew were sampled from two tributaries within the Moose Cree Homeland: the Lower Mattagami River (an impacted system with four hydroelectric generating stations) and the North French River (a reference system that is free-flowing system with no development). Results indicated namew from the North French River had higher blood [THg] than those from the Mattagami River. Further modeling showed that trophic position was the primary driver of these differences, with North French namew having the highest nitrogen isotope ratios. Based on further isotope modeling, crayfish were major components of namew diet at all sites, while other prey items differed between sites. Specifically, namew with unobstructed access to the lower watershed had notably more enriched isotope values when compared to the freshwater benthic macroinvertebrates sampled, implying that other prey not captured herein may contribute to their diets and [THg]. Overall, we found differences in namew’s trophic ecology but no elevation in blood mercury levels at a site impacted by hydroelectric operations 60+ years post-impoundment. - OPEN ACCESSPathogen dispersal from infected aquaculture sites into the surrounding ocean poses risks of infection to wild and farmed species, but is difficult to predict. This study aimed to build a framework using an ocean circulation and a particle tracking model in conjunction with a dynamic infection model and a virus inactivation model to simulate the dispersal of the infectious salmon anemia virus (ISAV) from Atlantic salmon farms. Simulated particles were released from hypothetically infected farms and advected by modelled currents. Inactivation of viral cohorts by ambient ultraviolet radiation and natural microbial communities was simulated during advection. Simulations showed that ISAV concentration varied spatiotemporally with the progression of the outbreak, current speed and direction, tidal elevation amplitude, and environmental decay. Connectivity among aquaculture sites varied in relation to seaway distances, though simulations showed that connectivity can also be asymmetrical between farm sites. Sensitivity analyses showed that the dispersal of ISAV was moderately sensitive to uncertainty associated with the viral decay model, highlighting the importance of obtaining accurate estimates of inactivation rates of ISAV. This framework provides an approach to simulate waterborne viral transmission that considers the biology and epidemic features of significance for pathogens and the dynamic conditions of the ocean.
- OPEN ACCESSThe American lobster fishery is the most economically significant commercial fishery in Atlantic Canada and takes place in waters that are warming due to climate change. Lobster are poikilotherms that tolerate a wide range of seasonal temperatures with an optimal range of 12–18 °C. Lobster in the Canadian Maritimes may be naturally acclimated to a wide range of temperatures and thus, could have a wide range of thermal tolerance that may be distinct across regions. The present study used non-invasive open-source tools to explore differences in thermal tolerance in real time between geographically separated lobster populations from around the Canadian Maritimes. Lobsters were acquired from six lobster fishing areas in the Canadian Maritimes and acclimated to either warm (15 °C) or cold (5 °C) water for two weeks before the onset of thermal trials. Geographic origin was not a significant predictor of estimated thermal maximum, while acclimation temperature was a significant predictor. These results suggest that thermal tolerance is more strongly linked to acclimation temperature than to geographic region.
- OPEN ACCESSReintroduction is an important tool in the conservation and recovery of aquatic species at risk. However, components of the reintroduction process such as transportation have the potential to induce physiological stress and the extent to which preparatory techniques can mitigate this stress is poorly understood in small-bodied fishes. To address this concern, we studied the effect of transport on two fitness-related performance measures: maximum metabolic rate and thermal tolerance in redside dace (Clinostomus elongatus), an imperilled small-bodied stream fish native to eastern North America. Prior to transportation, we manipulated the body condition of redside dace over a 12-week period, by providing either low (1% of their total body mass) or high (2% of their total body mass) rations. The goal of this manipulation was to influence body condition, as higher body condition can enhance physiological performance. Subsequently, redside dace were transported for varying durations: 0, 3, and 6 h. Following transportation, we measured maximum metabolic rate (µmol/h) and thermal tolerance (CTmax, °C). Our results indicate that neither transport nor body condition had a significant effect on maximum metabolic rate or thermal tolerance (CTmax). These findings provide preliminary evidence that redside dace can physiologically tolerate transport based on the endpoints measured and this information may possibly be extended to other small-bodied fish, for which information is lacking.
- OPEN ACCESSThe Nooksack Dace (Rhinichthys cataractae sp. cataractae) is a federally endangered riffle specialist endemic to the lower Fraser Valley of British Columbia, Canada, with historic population declines associated with riffle loss from stream dredging, channelization, and excessive sediment inputs. To assess the effectiveness of riffle restoration as a recovery strategy, gravel and cobble riffles were constructed in two replicate tributaries of the Nooksack River as a before-after-control-impact experiment, measuring dace abundance, substrate composition, and invertebrate biomass before and one year after restoration. Nooksack Dace density increased significantly in cobble (but not gravel) treatments relative to control riffles. Dace abundance was strongly associated with increased availability of interstitial refuges rather than substrate effects on invertebrate prey abundance, suggesting that interstitial space limits adult dace abundance. Young-of-the-year dace were not observed in one of the two restored streams despite riffle restoration, indicating increased dace density due to aggregation in higher-quality restored riffles. This recruitment limitation indicates persistence of a population bottleneck at an early life history stage that is not addressed by successful restoration of adult riffle habitat.
- OPEN ACCESSPrimary producers’ growth rates are ideal bioindicators of changing climate due to their sensitivity to environmental conditions. On the Central Coast of British Columbia, we assessed growth rates of Nereocystis luetkeana, a canopy-forming annual kelp, by assessing baseline variability in growth rates and their response to environmental conditions of over 600 individuals and across three sites (2016–2019). Optimal growth rates for blades and stipes (∼13–14 cm/day) occurred within a narrow range of local environmental conditions. Growth decreased at temperatures > 10 °C, below 1 µm/L nitrate concentration, and surface light availability reduced blade growth at low and high levels (daily light integral or DLI <20 and >40 mol/m2/day). Spatiotemporal variability in these environmental drivers co-occurred with differences in growth rates, suggesting that local conditions strongly influenced growth. In particular, temperature and nutrients were un-coupled seasonally in this region, with more variable responses in growth over the primary growing season (May to September). Overall, the sensitivity of the growth rates of this annual kelp to changing climatic conditions suggests that it is a useful bioindicator for management and marine planning efforts (e.g., restoration and aquaculture) across its species range and provides a feasible metric for monitoring.
- OPEN ACCESS
- Lee F.G. Gutowsky,
- Marshall Stuart,
- Amanda L. Caskenette,
- Lauren Jarvis,
- Doug A. Watkinson,
- Colin Kovachik,
- Douglas R. Leroux,
- Nicholas B. Kludt,
- Mark A. Pegg, and
- Eva C. Enders
In temperate rivers, where environmental conditions vary seasonally, many fishes migrate among summer, spawning, and winter habitats. Dams disrupt these migrations, limiting access to habitat and potentially affecting populations. Bigmouth Buffalo (Ictiobus cyprinellus) is a species of fish with at-risk populations in central Canada. The impact of dams on the extent of Bigmouth Buffalo migration and the overlap between summer and winter home ranges is unknown. Here, we assessed the migratory history of 80 Bigmouth Buffalo tagged with acoustic transmitters in the Red River (USA and Canada), a large binational waterway regulated by semi-passable dams. We sought to understand when and why Bigmouth Buffalo migrate, and how river use varies seasonally. Following more than 6 years of data collection, we found that the degree and probability of overlap between winter and summer home ranges varied by river section between barriers. Importantly, overlap was lowest in the longest continuous river section where well-defined migratory behaviours were observed. The results of this study reveal previously unknown details about Bigmouth Buffalo migration, demonstrate the consequences of river fragmentation on geographic space use, and highlight the importance of river connectivity to fish migration.