Applied Filters
- Zoology
Journal Title
Topics
- Biological and Life Sciences44
- Ecology and Evolution24
- Earth and Environmental Sciences4
- Integrative Sciences4
- Marine and Aquatic Sciences4
- Anatomy and Biomechanics2
- Biomedical and Health Sciences2
- Cell and Developmental Biology2
- Epidemiology2
- Genetics and Genomics2
- Microbiology2
- Chemistry1
- Conservation and Sustainability1
- Physical Sciences1
- Public Health1
- Science and Policy1
- Science and Society1
Publication Date
Author
- Mallory, Mark L4
- Robertson, Gregory J3
- Blunt, Brian J2
- Currie, Philip J2
- Cutler, G Christopher2
- Faure, Paul A2
- Fenton, M Brock2
- Funston, Gregory F2
- Gasheva, Anastasia2
- Hardiman, Gary2
- Hazard, E Starr2
- Headley, John V2
- Jackson, Alan C2
- Lewis, Carlie R2
- Lyons, Danielle D2
- Manning, Paul2
- Martin-Silverstone, Elizabeth2
- Morris, Douglas W2
- Orihel, Diane M2
- Ramanaidu, Krilen2
- Shamchuk, Angela L2
- Tierney, Keith B2
- Tomlin, Kirsten2
- Wang, Mo Qi2
- Arciszewski, Tim J1
Access Type
21 - 40of44
Save this search
Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Filters
You do not have any saved searches
- OPEN ACCESSBats are susceptible to rabies. Although bats may appear to be asymptomatic carriers of rabies for a few days, eventually they fall ill to the viral infection and die. Two of at least four bat-specific variants of rabies virus in Canada have killed humans. Rabies is usually transmitted by biting, but bats are small mammals so their bites may go unnoticed. People exposed to rabid animals should receive postexposure prophylaxis (PEP). With 60 known human deaths from 1950 to 2009, rabies is rare in Canada and the United States of America compared with India where it kills over 100 people annually. In Asia and Africa, most human rabies is acquired from dog bites. In Brazil, dog and bat bites together account for >80% of human rabies. In Canada, rabies is a disease primarily confined to wildlife (foxes, racoons, skunks, and bats). The public image of bats is negatively affected by their association with diseases. Too often bats are victimized by allegations of their role in deadly diseases such as rabies, Ebola, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS). In general, bats are not dangerous, but humans should seek treatment if they are bitten by one. (Graphical abstract shows a 4-g elegant myotis biting MBF’s finger—photo by Sherri and Brock Fenton.)
- OPEN ACCESS
- Joe-Felix Bienentreu,
- Leon Grayfer,
- Danna M. Schock,
- Matthew Guerreiro,
- Melanie Mehes-Smith,
- Stephanie J. DeWitte-Orr,
- Jacques Robert,
- Craig R. Brunetti, and
- David Lesbarrères
Ranaviruses have been associated with rising numbers of mass die-offs in amphibian populations around the globe. However, most studies on ranaviruses to date focused on larval amphibians. To assess the role of postmetamorphic amphibians in the epidemiology of ranaviruses and to determine the role of viral immune-suppression genes, we performed a bath-exposure study on post-metamorphic wood frogs (Rana sylvatica) using environmentally relevant concentrations of wild-type Frog virus 3 (WT FV3), and a gene-knockout mutant (KO FV3), deficient for the putative immune-suppression gene vIF-2α. We observed a 42% infection rate and 5% mortality across the virus challenges, with infection rates and viral loads following a dose-dependent pattern. Individuals exposed to the knockout variant exhibited significantly decreased growth and increased lethargy compared with wild-type treatments. Although 85% of exposed individuals exhibited common signs of ranavirosis throughout the experiment, most of these individuals did not exhibit signs of infection by 40 d post-exposure. Overall, we showed that even a single short time exposure to environmentally relevant concentrations of ranavirus may cause sublethal infections in postmetamorphic amphibians, highlighting the importance of this life stage in the epidemiology of ranaviruses. Our study also supports the importance of the vIF-2α gene in immune-suppression in infected individuals. - OPEN ACCESSRanaviruses are an emerging group of pathogens capable of infecting all cold-blooded vertebrates. In Europe, ranaviruses pose a particularly potent threat to wild amphibian populations. Since the 1980s research on amphibian-infecting ranaviruses in Europe has been growing. The wide distribution of amphibian populations in Europe, the ease with which many are monitored, and the tractable nature of counterpart ex situ experimental systems have provided researchers with a unique opportunity to study many aspects of host–ranavirus interactions in the wild. These characteristics of European amphibian populations will also enable researchers to lead the way as the field of host–ranavirus interactions progresses. In this review, we provide a summary of the current key knowledge regarding amphibian infecting ranaviruses throughout Europe. We then outline important areas of further research and suggest practical ways each could be pursued. We address the study of potential interactions between the amphibian microbiome and ranaviruses, how pollution may exacerbate ranaviral disease either as direct stressors of amphibians or indirect modification of the amphibian microbiome. Finally, we discuss the need for continued surveillance of ranaviral emergence in the face of climate change.
- OPEN ACCESSRanaviral infections have been associated with mass mortality events in captive and wild amphibian, fish, and reptile populations globally. In Australia, two distinct types of ranaviruses have been isolated: epizootic haematopoietic necrosis virus in fish and a Frog virus 3-like ranavirus in amphibians. Experimental studies and serum surveys have demonstrated that several Australian native fish, amphibian, and reptile species are susceptible to infection and supported the theory that ranavirus is naturally circulating in Australian herpetofauna. However, ranaviral infections have not been detected in captive or wild lizards in Australia. Oral-cloacal swabs were collected from 42 wild lizards from northern Queensland and 83 captive lizards from private collections held across three states/territories. Samples were tested for ranaviral DNA using a quantitative PCR assay. This assay detected ranaviral DNA in 30/83 (36.1%) captive and 33/42 (78.6%) wild lizard samples. This is the first time molecular evidence of ranavirus has been reported in Australian lizards.
- OPEN ACCESSHigh-latitude countries often contain the polar range edge of species that are common farther south, potentially focusing national conservation efforts toward range-edge populations. The global conservation value of edge populations is controversial, but if they occur where biodiversity is high, there need not be trade-offs in protecting them. Using 152 of 158 terrestrial mammal species in Canada, we tested how species’ distributions relate to their national conservation status and total mammal richness. We found that half of “Canadian” mammals had <20% of their global range in Canada. National threat status was strongly associated with range area; mammals considered “at risk” had 42% smaller Canadian ranges than mammals considered secure. However, after accounting for range area, taxa with smaller proportions of their global range in Canada were not more likely to be considered at risk, suggesting edge populations are not inherently more vulnerable. When we calculated mammal diversity across Canada (100 × 100 km grid cells), we found that hotspots of at-risk or range-edge mammals were twice as species rich as nonhotspot cells, containing up to 44% of Canadian mammal diversity per grid cell. Our results suggest that protecting areas with the most at-risk or range-edge mammals would simultaneously protect habitat for many species currently deemed secure.
- OPEN ACCESSMonarch butterflies (Danaus plexippus, Linnaeus, 1758) are comprised of two migratory populations separated by the Rocky Mountains and are renowned for their long-distance movements among the United States, Canada, and Mexico. Both populations have declined over several decades across North America prompting all three countries to evaluate conservation efforts. Monitoring monarch distribution and abundance is a necessary aspect of ongoing management in Canada where they are a species at risk. We used presence-only data from two citizen science data sets to estimate the annual breeding distribution of monarch butterflies in Canada between 2000 and 2015. Monarch breeding distribution in Canada varied widely among years owing to natural variation, and when considering the upper 95% of the probability of occurrence, the annual mean breeding distribution in Canada was 484 943 km2 (min: 173 449 km2; max: 1 425 835 km2). The area of occurrence was approximately an order of magnitude larger in eastern Canada than in western Canada. Habitat restoration for monarch butterflies in Canada should prioritize productive habitats in southern Ontario where monarchs occur annually and, therefore, likely contribute most to the long-term viability of monarchs in eastern North America. Overall, our assessment sets the geographic context to develop successful management strategies for monarchs in Canada.
- OPEN ACCESSWe used moored 75 kHz acoustic Doppler current profilers (ADCPs) to examine seasonal cycles in zooplankton deep scattering layers (DSLs) observed below 1300 m depth at Endeavour Ridge hydrothermal vents. DSLs are present year-round in the lower water column near vent plumes. Temporal variations suggest passive, flow-induced displacements superimposed on migratory movements. Although the strongest DSLs are shallower than the neutrally buoyant plumes (1900–2100 m), anomalies also occur at and below plume depth. Upward movement from plume depth in the main DSL is evident in late summer/fall, resulting in shallower DSLs in winter, consistent with the timing of adult diapause/reproduction in upper-ocean migratory copepods. Movement from the upper ocean to plume depth coincides with pre-adult migration to greater depths in spring. Synchronous 20–40 d cycles in DSLs may account for patchiness in space and time of above-plume zooplankton layers observed in summer during previous net-sampling surveys, and suggests lateral and vertical migratory movements to counter current drift away from plume-derived food sources. Persistent near-bottom DSLs move vertically between the spreading plume and seafloor. Historical net data suggests that these are deep, resident fauna. Unlike upper ocean fauna, they seem to be advected considerable distances from the ridge axis, where they are evident as remnant scattering layers.
- OPEN ACCESSPrey individuals employ several adaptive behaviours to reduce predation risk. We need to learn how those behaviours interact in an overall strategy of risk management, how strategies vary with changing conditions, and whether some behaviours might compensate for others. I addressed these issues with manipulative experiments evaluating how snowshoe hares’ (Lepus americanus) vigilance varies with their giving-up densities (GUDs) in artificial food patches. I tested whether the results, collected when there was no evidence of predation, were congruent with an earlier study under higher predation. When predator sign was common, vigilance depended directly on habitat. But when risk was low, habitat’s influence on vigilance was indirect. Hares were least vigilant during the new moon where the distance to escape habitat was far, but only in open risky habitat. Hares were more vigilant during the full moon, but only at stations far from escape habitat. Moon phase and additional cover had no effect on GUDs that were highest at open risky stations far from escape habitat. The results suggest that reduced risk allowed hares to allocate less time to vigilance, but they needed to forage for similar amounts of food during each moon phase to maintain their energetic state.
- OPEN ACCESSCimicid insects, bed bugs and their allies, include about 100 species of blood-feeding ectoparasites. Among them, a few have become widespread and abundant pests of humans. Cimicids vary in their degree of specialization to hosts. Whereas most species specialize on insectivorous birds or bats, the common bed bug can feed on a range of distantly related host species, such as bats, humans, and chickens. We suggest that association with humans and generalism in bed bugs led to fundamentally different living conditions that fostered rapid growth and expansion of their populations. We propose that the evolutionary and ecological success of common bed bugs reflected exploitation of large homeothermic hosts (humans) that sheltered in buildings. This was a departure from congeners whose hosts are much smaller and often heterothermic. We argue that interesting insights into the biology of pest species may be obtained using an integrated view of their ecology and evolution.
- OPEN ACCESSWe examined the physical and geochemical effects of sediment on the uptake of polybrominated diphenyl ethers (PBDEs) into marine sediment feeders and their transfer to higher trophic fauna. Sediment PBDEs increased with % total organic carbon (%TOC), organic carbon (OC) flux and grain size (%fines). Tissue PBDE variance was best explained (R2 = 0.70) by sediment acid volatile sulfides (AVS), PBDEs, and organic lability and input, with the highest values near wastewater outfalls. Dry weight tissue/sediment PBDEs declined with increasing sediment PBDEs, resulting in tissue dilution (ratio <1) at >10 000 pg/g in harbours. Ratios also decreased with increasing %fines, resulting in regional differences. These patterns imply that high levels of fines and high sediment concentrations make PBDEs less bioavailable.Dry weight PBDEs increased >100× between background deposit feeders and predators (polychaetes, crabs, bottom fish, seal), but lipid normalized PBDEs barely increased (<1.3%), suggesting remarkably high uptake in low-lipid sediment feeders, and that PBDEs don’t accumulate at higher trophic levels, but lipid content does. Filter feeders had lower lipid-normalized PBDEs than deposit feeders, highlighting the importance of food resources in higher trophic fauna for bioaccumulation.The most profound congener change occurred with sediment uptake, with nona/deca-BDEs declining and tetra-hexa-BDEs increasing. Harbour sediment feeders had more deca-BDEs than other samples, suggesting PBDEs mostly pass unmodifed through them. Deca-BDEs persist patchily in all tissues, reflecting variable dependence on sediment/pelagic food.
- OPEN ACCESS
- Emily M. Merlo,
- Kathryn A. Milligan,
- Nola B. Sheets,
- Christopher J. Neufeld,
- Tao M. Eastham,
- A.L. Ka’ala Estores-Pacheco,
- Dirk Steinke,
- Paul D.N. Hebert,
- Ángel Valdés, and
- Russell C. Wyeth
The mollusc nudibranch genus Hermissenda Bergh, 1879 was recently discovered to include three pseudocryptic species, dividing a single species H. crassicornis (sensu lato) into H. crassicornis Escholtz, 1831, H. opalescens J.G. Cooper, 1863, and H. emurai Baba, 1937. The species were distinguished by both genetic and morphological evidence, and the distribution of sampled animals suggested the three species had mostly distinct geographical ranges. Here, we report the presence of both H. crassicornis and H. opalescens in Barkley and Clayoquot Sounds, British Columbia, Canada, based on diagnostic characters and molecular data congruent with the differences described for these two species. This result extends the region of sympatry for the two species from northern California, USA, to, at least, Vancouver Island, British Columbia in 2016. Depending on how long this overlap has occurred, the possible northward expansion of H. opalescens would have implications for understanding the effects of short- or long-term environmental changes in ocean temperatures as well as complicating the interpretation of past neurobiological studies of H. crassicornis (sensu lato). - OPEN ACCESS
- OPEN ACCESS
- OPEN ACCESSPrey individuals possess four basic strategies to manage predation risk while foraging: time allocation, space use, apprehension, and foraging tenacity. But there are no direct tests of theory detailing how spatial strategies change and covary from fine to coarse scales of environmental variability. We address this shortcoming with experiments that estimated space use and vigilance of snowshoe hares while we measured foraging tenacity in artificial resource patches placed in risky open versus safe alder habitat. Hares employed only two of eight a priori options to manage risk. Hares increased vigilance and reduced foraging in open areas as the distance from cover increased. Hares did not differentiate between open and alder habitats, increase vigilance at the coarse-grained scale, or reduce vigilance and foraging tenacity under supplemental cover. Hares were more vigilant in the putatively safe alder than in the purportedly risky open habitat. These apparently paradoxical results appear to reflect a trade-off between the benefit of alder as escape habitat and the cost of obscured sight lines that reduce predator detection. The trade-off also appears to equalize safety between habitats at small scales and suggests that common-sense predictions detailing how prey reduce risk may make no sense at all.
- OPEN ACCESSUALVP 56200, originally identified as a partial pelvis of an azhdarchid pterosaur, is a badly broken tyrannosaurid squamosal. Previous conclusions presented about pelvic myology and locomotion in azhdarchids are unsubstantiated and should be disregarded. UALVP 56200 is briefly redescribed here as a squamosal, and provides insights on the extent of cranial pneumaticity in tyrannosaurids.
- OPEN ACCESSMercury (Hg) in wildlife remains of great concern, especially for apex piscivores. Despite this, exposure information from many species in many areas is lacking, so that management decisions are hampered. Here we examine Hg concentrations in fur, liver, and kidney tissues from river otters (Lontra canadensis (Schreber, 1777)) (n = 203) to quantify existing Hg concentrations over a broad geographic area in Saskatchewan. Mean fur total Hg (THg) (9.68 ± 7.52 mg/kg fresh weight (f.w.)) was significantly correlated with THg and organic Hg (OHg) in liver and kidney tissue, showcasing the potential for using fur as a noninvasive method of monitoring Hg in top-level mammals. Livers of males had higher mean OHg concentrations than livers of females (males: 2.71 mg/kg d.w., females: 1.87 mg/kg d.w.), but not significantly so. No sex-related differences were observed in kidney OHg concentrations. THg concentrations in otter fur collected in the Boreal Shield ecozone (Churchill River Upland) were significantly higher (mean = 16.1 mg/kg f.w.) than in otter fur collected from the Boreal Plain ecozone (mean = 8.59 mg/kg f.w.). Fur from otters (n = 20; trapping block N66) trapped near a decommissioned smelter contained the highest concentrations of THg in the study (mean = 18.4 mg/kg f.w.).
- OPEN ACCESSRecently, the use of small-bodied fish in environmental monitoring has increased, particularly within the Canadian environmental effects monitoring (EEM) and other adaptive programs. Although it is possible to measure changes with many small-bodied species, interpretation is often complicated by the absence of information on the biology and ecology of fish not of commercial, recreational, or traditional interest. Knowing and understanding the basic biology of these fishes aids in the sensitivity of study designs (i.e., ability to detect change) and the interpretation of all biological levels of responses (e.g., cellular to community). The increased use of slimy sculpin (Cottus cognatus Richardson, 1836) in impact assessment studies in North America provides a considerable amount of information on life history aspects. The slimy sculpin has the most ubiquitous North American distribution among cottids but yet has a very small home range, thus integrating environmental conditions of localized areas. This paper describes aspects of slimy sculpin life cycle that affect collection efficiency and timing, and describes and provides data collected over more than 10 years of studies at more than 20 reference study sites. This overview provides a functional and informative compilation to support adaptive environmental monitoring and provide a baseline for comparative ecological study.
- OPEN ACCESS
- Angela L. Shamchuk,
- Brian J. Blunt,
- Danielle D. Lyons,
- Mo Qi Wang,
- Anastasia Gasheva,
- Carlie R. Lewis,
- Kirsten Tomlin,
- E. Starr Hazard,
- Gary Hardiman, and
- Keith B. Tierney
The sensory system of animals detects a massive and unknown array of chemical cues that evoke a diversity of physiological and behavioural responses. One group of nitrogen-containing carbon ring chemicals—nucleobases—are thought to be involved in numerous behaviours yet have received little attention. We took a top-down approach to examine responses evoked by nucleobases at behavioural, tissue, and gene expression levels. Fish generally avoided nucleobases, and this behaviour, when observed, was driven by purines but not pyrimidines. At the tissue level, olfactory neuron generator potential responses tended to be concentration specific and robust at concentrations lower than amino acid detection ranges. In terms of gene expression, more than 2000 genes were significantly upregulated following nucleobase exposure, some of which were expected (e.g., genes involved in purine binding) and some of which were not (e.g., tubulin-related genes). Humanized RNA pathway analysis showed that we had exposed the animal to a nucleobase. Our data indicate that responses to nucleobase-containing compounds may be highly structure based and are evident from changes in behaviour to mRNA expression. Many of these responses were surprising, and all provide numerous routes for further research endeavour. - OPEN ACCESSAtlantic salmon populations are declining, and warming river temperatures in the summer months are thought to be a significant contributing factor. We describe the time course of cellular and metabolic responses to an ecologically relevant short-term thermal cycle in juvenile Atlantic salmon. We then examined whether this heat event would affect tolerance to a subsequent heat shock in terms of critical thermal maximum (CTmax). Fish induced heat shock protein 70 in red blood cells, heart, liver, and red and white muscle; whole blood glucose and lactate transiently increased during the heat cycle. In contrast, we observed no significant effect of a prior heat shock on CTmax. The CTmax was positively correlated with Fulton’s condition factor suggesting that fish with greater energy reserves are more thermally tolerant. Atlantic salmon activate cellular protection pathways in response to a single thermal cycle and appear to cope with this short-term, ∼1 d heat shock, but this challenge may compromise the ability to cope with subsequent heat events.
- OPEN ACCESSThe diversity of insect parasitoids (Hymenoptera) has long been thought to be anomalous because it doesn’t appear to increase rapidly with decreasing latitude. However, due to the presence of undiscovered cryptic species and the under-sampling of hyper-diverse tropical areas, such apparently anomalous gradients may, in fact, be artifacts of limited geographic and taxonomic sampling. We attempted to circumvent such taxonomic impediments by elucidating a diversity/latitude relationship for parasitoid wasps, using publicly available DNA sequences to quantify diversity (via a species proxy molecular operational taxonomic unit (the DNA Barcode Index Number) and phylogenetic diversity) across a latitudinal gradient of ∼5000 km. We compared these diversity values to the abiotic factors (temperature and precipitation) that may drive the diversity/latitude relationship. We found no significant relationship between either diversity measure with latitude or with the environmental variables. Although ours is the first work to enumerate different DNA-based measures of parasitoid diversity across this geographic scale in a standardized fashion using publicly available sequences, further standardized collections over long time periods and a rapid movement of sequences into the public arena are needed to facilitate the further testing of macroecological trends elucidated with public DNA sequence libraries.