Applied Filters
- Earth and Environmental Sciences
Journal Title
Topics
- Marine and Aquatic Sciences107
- Integrative Sciences59
- Biological and Life Sciences44
- Conservation and Sustainability38
- Ecology and Evolution36
- Geosciences34
- Atmospheric and Climate Sciences13
- Science and Policy9
- Science and Society8
- Biomedical and Health Sciences5
- Physical Sciences4
- Zoology4
- Chemistry3
- Genetics and Genomics3
- Science Communication3
- Clinical Sciences2
- Engineering, Technology, and Mathematics2
- Epidemiology2
- Ethics1
- Mathematics and Statistics1
- Microbiology1
- Nutrition, Sport, and Exercise Sciences1
- Physics1
- Technology1
Publication Date
Author
- Cheung, William W L4
- Hall, Britt D4
- Lotze, Heike K4
- Rochman, Chelsea M4
- Boyce, Daniel G3
- Chan, Hing Man3
- Corcoran, Patricia L3
- Miller, Kristina M3
- Orihel, Diane M3
- Rubidge, Emily M3
- Salomon, Anne K3
- Tabata, Amy3
- Vermaire, Jesse C3
- Atlas, William I2
- Ban, Natalie C2
- Baulch, Helen M2
- Bernstein, Sarah2
- Blanchard, Julia L2
- Boczulak, Stacy A2
- Bryndum-Buchholz, Andrea2
- Burd, Brenda J2
- Coffin, Michael R S2
- Cooke, Steven J2
- Courtenay, Simon C2
- Darimont, Chris T2
Access Type
101 - 141of141
Save this search
Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Filters
You do not have any search history
You do not have any saved searches
- OPEN ACCESS
- P.J. Duke,
- B. Richaud,
- R. Arruda,
- J. Länger,
- K. Schuler,
- P. Gooya,
- M.M.M. Ahmed,
- M.R. Miller,
- C.A. Braybrook,
- K. Kam,
- R. Piunno,
- Y. Sezginer,
- G. Nickoloff, and
- A.C. Franco
Improving our understanding of how the ocean absorbs carbon dioxide is critical to climate change mitigation efforts. We, a group of early career ocean professionals working in Canada, summarize current research and identify steps forward to improve our understanding of the marine carbon sink in Canadian national and offshore waters. We have compiled an extensive collection of reported surface ocean air–sea carbon dioxide exchange values within each of Canada's three adjacent ocean basins. We review the current understanding of air–sea carbon fluxes and identify major challenges limiting our understanding in the Pacific, the Arctic, and the Atlantic Ocean. We focus on ways of reducing uncertainty to inform Canada's carbon stocktake, establish baselines for marine carbon dioxide removal projects, and support efforts to mitigate and adapt to ocean acidification. Future directions recommended by this group include investing in maturing and building capacity in the use of marine carbon sensors, improving ocean biogeochemical models fit-for-purpose in regional and ocean carbon dioxide removal applications, creating transparent and robust monitoring, verification, and reporting protocols for marine carbon dioxide removal, tailoring community-specific approaches to co-generate knowledge with First Nations, and advancing training opportunities for early career ocean professionals in marine carbon science and technology. - OPEN ACCESS
- Tyler D. Eddy,
- Daniel Duplisea,
- Matthew D. Robertson,
- Raquel Ruiz-Díaz,
- C. Abraham Solberg, and
- Fan Zhang
Fish populations are dynamic; their productivity depends on the environment, predator and prey interactions, and fisheries harvest rates. Failure to account for these factors in fisheries science and management can lead to a misestimation of stock dynamics and productivity, resulting in overexploitation or forgone fisheries yield. Using an online survey, we asked fisheries scientists, industry stakeholders, Indigenous partners, and non-governmental organizations whether changing ecosystem productivity was a problem in their experience, how often dynamic approaches to fisheries reference points have been adopted, what methods had been used, and what fisheries they had been applied to. Changing fisheries or ecosystem productivity was reported as an issue by 96% of respondents; however, 74% of respondents said they had never seen dynamic reference points implemented, 16% said in very few instances, while 10% said frequently. The most common barriers to implementation of dynamic approaches in fisheries management were institutional inertia and uncertainty about whether a change in productivity was lasting. We discuss trade-offs between fisheries management performance and stability. - OPEN ACCESSPiscine orthoreovirus genotype 1 (PRV-1) is a common virus in farmed and wild salmon in the northeastern Pacific Ocean. Its regional occurrence in freshwater is far less clear. From 2019 to 2021, tissues of 5619 juvenile anadromous salmon (primarily Atlantic, Chinook, and coho) sampled from 12 commercial and 27 enhancement British Columbia hatcheries during 83 sampling events were screened for PRV-1 prior to seawater entry. More than 2200 (∼40%) were also screened using a Pan-PRV assay targeting all known PRV genotypes. PRV-1 was detected in four coho salmon at two freshwater enhancement facilities and in one Chinook salmon at a commercial facility. Partial (S1 segment) genome sequencing identified detections to be of the PRV-1 subgenotype endemic to the northeastern Pacific. PRV-1 was not detected (5611 individuals; 99.9%) or test results were inconclusive (3 individuals; 0.05%) for all remaining samples screened for PRV-1. PRV-2 and PRV-3 were not detected using the Pan-PRV assay. It is concluded that commercial and enhancement freshwater hatcheries of British Columbia contribute minimally to the prevalence and persistence of PRV-1 in anadromous salmon of the northeastern Pacific, and these hatcheries appear not to have contracted or participated in the distribution of nonendemic forms of PRV in recent years.
- OPEN ACCESSThe impact of the southern Gulf of St. Lawrence American lobster (Homarus americanus) fishery on species bycatch is currently unknown. The composition of the incidental catch, both nonharvestable lobster (by fisheries regulations) and nonlobster species, was systematically collected over the 2015 spring and summer fishing seasons. A total of 51 948 (7147 were nonlobster taxa) individual organisms weighing 13 987.60 kg (1223.91 kg of nonlobster taxa) were captured as bycatch during 73 fishing trips. By weight per trip, the most common lobster bycatch were undersized male and females, and the highest nonlobster species catch were Atlantic rock crab (Cancer irroratus). A semiquantitative assessment of injury and vitality was applied to bycatch as a proxy for discard mortality. The majority of the individuals assessed for visible injury were deemed uninjured (98% both fish and invertebrates); however, postrelease mortality was not measured. A smaller study in 2019 corroborated the 2015 catches and supported current assumptions that the passive gear type, the low diversity of bycatch, and the rapid hand-sorting of the trap minimize the impact of the lobster fishery on incidentally captured taxa. Further scientific monitoring is recommended to better account for all sources of mortality in stock assessments and rebuilding plans.
- OPEN ACCESS
- Lesya Marushka,
- Xue Feng Hu,
- Tiff-Annie Kenny,
- Malek Batal,
- Karen Fediuk,
- Tonio Sadik,
- Christopher D. Golden,
- William W. L. Cheung,
- Anne K. Salomon, and
- Hing Man Chan
The objective of this study is to examine the potential cardiovascular risk of climate-related declines in seafood consumption among First Nations in British Columbia by assessing the combined effects of reduced omega-3 fatty acids and mercury intake from seafood on the risk of myocardial infarction (MI) in 2050 relative to 2009. The data were derived from the First Nations Food, Nutrition, and Environment Study. Seafood consumption among 369 randomly selected participants was estimated, and hair mercury concentrations were measured. Declines in seafood consumption were modelled based on previously projected climate change scenarios, and the associated changes in nutrients and contaminants were used to estimate the cardiovascular risk. Reduced seafood consumption was projected to increase the risk of MI by 4.5%–6.5% among older individuals (≥50 years), by 1.9%–2.6% in men, and by 1.3%–1.8% in women under lower and upper climate change scenarios, respectively. Reduced seafood consumption may have profound cardiovascular implications. Effective strategies are needed to promote sustainable seafood harvests and access to seafood for coastal First Nations. - OPEN ACCESSIn 2020, the COVID-19 pandemic interrupted all aspects of human activity, including environmental research and monitoring. Despite a lack of laboratory access and other restrictive measures, we adapted an existing community science monitoring program to continue through the summer of 2020. We worked with local community groups to recruit 58 volunteers who collected lake water samples from 60 sites on 16 lakes in south-central Ontario from June to September 2020. We organized drop-off depots and had volunteers freeze samples to monitor nearshore nutrients (phosphorus and nitrogen) and chlorophyll-a. A survey was distributed to volunteers to analyze lake-front property owners’ activities during the pandemic. We found spatial patterns in nearshore water quality across the lakes, with sub-watershed development being a significant predictor of nutrients and chlorophyll-a. Additionally, pre-pandemic (2019) and pandemic (2020 and 2021) nutrient concentrations were compared, but there was no clear impact of the pandemic on nearshore nutrient concentrations, despite changes in lake-front property owners activities. Overall, this study demonstrated the ability of community science to provide water quality data on a large spatial scale despite a major societal disruption, providing insight into regional nutrient trends during the first year of the pandemic.
- OPEN ACCESS
- Ha Pham and
- Marc Saner
Inclusion has been gaining increased attention in various domains, including education and the workplace, as well as development, governance, urbanization, and innovation. However, in the context of climate change adaptation (CCA), the concept of “inclusiveness” remains comparatively underexplored, with no overarching framework available. This gap is crucial, given the global scope and multifaceted nature of climate change, which demands a comprehensive and inclusive approach. In this article, we address this deficiency by developing a comprehensive conceptualization of inclusive climate change adaptation (ICCA). Grounded in ethical analysis, our framework is presented for discussion and practical testing. We identify nine specific priority areas and propose one to two qualitative indicators for each, resulting in a suite of 15 indicators for the evaluation of ICCA policies. This research not only highlights the urgency of incorporating inclusiveness into CCA, but it also provides a practical framework by which to guide policymakers, practitioners, and researchers in this critical endeavor. By acknowledging and accommodating diverse value systems and considering the entire policy process, from conception to evaluation, we aim to foster a more inclusive and sustainable approach to CCA. - OPEN ACCESS
- Andrea Bryndum-Buchholz,
- Julia L. Blanchard,
- Marta Coll,
- Hubert Du Pontavice,
- Jason D. Everett,
- Jerome Guiet,
- Ryan F. Heneghan,
- Olivier Maury,
- Camilla Novaglio,
- Juliano Palacios-Abrantes,
- Colleen M. Petrik,
- Derek P. Tittensor, and
- Heike K. Lotze
Climate change is altering marine ecosystems across the globe and is projected to do so for centuries to come. Marine conservation agencies can use short- and long-term projections of species-specific or ecosystem-level climate responses to inform marine conservation planning. Yet, integration of climate change adaptation, mitigation, and resilience into marine conservation planning is limited. We analysed future trajectories of climate change impacts on total consumer biomass and six key physical and biogeochemical drivers across the Northwest Atlantic Ocean to evaluate the consequences for Marine Protected Areas (MPAs) and Other Effective area-based Conservation Measures (OECMs) in Atlantic Canada. We identified climate change hotspots and refugia, where the environmental drivers are projected to change most or remain close to their current state, respectively, by mid- and end-century. We used standardized outputs from the Fisheries and Marine Ecosystem Model Intercomparison Project and the 6th Coupled Model Intercomparison Project. Our analysis revealed that, currently, no existing marine conservation areas in Atlantic Canada overlap with identified climate refugia. Most (75%) established MPAs and more than one-third (39%) of the established OECMs lie within cumulative climate hotspots. Our results provide important long-term context for adaptation and future-proofing spatial marine conservation planning in Canada and the Northwest Atlantic region. - OPEN ACCESSAnthropogenic pressures, including urban and agricultural expansion, can negatively influence a lake's capacity to provide aquatic ecosystem services (ES). However, identifying lakes most at risk of losing their ES (i.e., higher vulnerability) requires integrating information on lake ecological state, global change threats, and ES use. Here, we provide a social–ecological framework that combines these features within a regional context by evaluating the ecological state of 659 lakes across Canada. Using the deviation of impacted lakes from reference ones, we identified much higher total nitrogen and chloride concentrations as the main indicators of an altered lake ecological state in all regions identified. Lake ecological state was mapped using an additive colour model along with regional scores of threat levels and recreational ES use. Urban and agriculturally developed areas were linked to higher lake vulnerability and ES loss. Lakes in Southern Ontario were most concerning, being highly altered, under threat, and heavily used. Lakes near coastal urban centers were altered and used, but less threatened, whereas those in the Prairies were altered and threatened, but less used. Our novel framework provides the first social–ecological geography of Canadian lakes, and is a promising tool to assess lake state and vulnerability at scales relevant for management.
- OPEN ACCESS
- Tomislav Hengl,
- Preston Sorenson,
- Leandro Parente,
- Kimberly Cornish,
- Jeffrey Battigelli,
- Carmelo Bonannella,
- Monika Gorzelak, and
- Kris Nichols
A three-dimensional predictive soil mapping approach for predicting soil organic carbon (SOC) stocks (t/ha) at high spatial resolution (30 m) for Alberta for 2020–2021 is described. A remote sensing data stack was first prepared covering Alberta’s agricultural lands. A total of 404 sampling locations were distributed across Alberta using 2-scale sampling: (1) 22 pilot farms representing main climatic zones and (2) conditioned Latin hypercube sampling at each farm. Soil samples were taken at four standard depths (0–15, 15–30, 30–60, 60–100 cm) using soil probes and analyzed for SOC. Predictive models for SOC content and bulk density were built separately and then used to predict at 0, 15, 30, 60, and 100 cm and calculate aggregated SOC stocks per pixel. The SOC content and bulk density models had R squares of 0.61 and 0.68, respectively. Based on these mapping results, grassland soils were consistently associated with higher SOC stocks across all soil types as compared to croplands. The average SOC stock increase for grassland soils compared to cropland soils was 2.1 Mg per hectare, ranging from 2.17 to 6.09 Mg per hectare depending on soil type. Results also showed that >15 % of total SOC stocks were located in subsoil, which was higher than expected. - OPEN ACCESSDocumented plastic pollution throughout the Laurentian Great Lakes system prompted investigation of microplastics (MPs) in sediment cores. We examined offshore sediment cores from Lake Huron (LH43) and Lake Ontario (403A) to understand temporal trends and changes in microplastic (MP) pollution in the size range 53 µm to 2 mm. MP abundances varied from 18.1 to 280.1 particles per g of dry weight sediment (N g−1 dw) in LH43, and 8.2–488.4 g−1 dw in core 403A. The 15 cm cores are equivalent to 56 years of accumulation in Lake Huron and 72 years of accumulation in Lake Ontario. Analysis of the two cores shows an increasing trend in MP accumulation from 1964 to 1989, which mirrors the global plastic production rate. Subsequent peaks and troughs in the MP abundance profiles reflect macroeconomic changes and regional controls. These results show how changing abundances of MPs in lake sediment cores can act as proxies for global perturbations in oil supply as well as national economic shifts.
- OPEN ACCESSSince the beginning of its large-scale production in the early 20th century, plastics have remained an important material in widespread use throughout modern society. Nevertheless, despite possessing many benefits, plastics are resistant to degradation and instead accumulate in the ocean and terrestrial sediments, thereby potentially affecting marine and terrestrial ecosystems. Plastics release CO2 throughout their entire lifecycle; during the extraction of materials used in their production, through plastic–carbon leaching in the marine and terrestrial environment, and during their different end-of-life scenarios, which include recycling, landfill, and incineration. Here, we use the University of Victoria earth system climate model to quantity the effects on atmospheric CO2 and the ocean carbon cycle by using upper-bound estimates of carbon emissions from marine plastic–carbon leaching or land-based incineration. Despite the suggestions of some, our results indicate that it has only a very minor influence and an insignificant effect on the earth's global climate system. This holds even if plastic contamination increases well beyond current levels. On the other hand, carbon emissions associated with plastic production and incineration have a greater impact on climate while still dwarfed by emissions associated with the combustion of fossil fuels (coal, oil, and natural gas) and other anthropogenic sources. Our results have important policy implications for ongoing United Nations Environment Programme Intergovernmental Negotiating Committee on Plastic Pollution negotiations.
- OPEN ACCESSHistorical gold mining operations between the 1860s and 1940s have left substantial quantities of arsenic- and mercury-rich tailings near abandoned mines in remote and urban areas of Nova Scotia, Canada. Large amounts of materials from the tailings have entered the surface waters of downstream aquatic ecosystems at concentrations that present a risk to benthos. We used paleolimnological approaches to examine long-term trends in sedimentary metal(loid) concentrations, assess potential sediment toxicity, and determine if geochemical recovery has occurred at four lakes located downstream of three productive gold-mining districts. During the historical mining era, sedimentary total arsenic and mercury concentrations and enrichment factors increased substantially at all downstream lakes that received inputs from tailings. Similarly, chromium, lead, and zinc concentrations increased in the sediments after mining activities began and the urbanization that followed. The calculated probable effects of concentration quotients (PEC-Qs) for sediments exceeded the probable biological effects threshold (PEC-Q > 2) during the mining era. Although sedimentary metal(loid) concentrations have decreased for most elements in recent sediments, relatively higher PEC-Q and continued exceedance of Canadian Interim Sediment Quality Guidelines suggest that complete geochemical recovery has not occurred. It is likely that surface runoff from tailing fields, urbanization, and climate-mediated changes are impacting geochemical recovery trajectories.
- OPEN ACCESS
- D.T. Enright,
- P. Comeau, and
- D.M. Gillis
We used isodars, developed from the ideal free distribution (IFD), to predict the distribution of fishing effort across regulatory boundaries in the south-western Scotian Shelf’s haddock fishery. Our analysis was focused around the boundary between Northwest Atlantic Fisheries Organization’s Divisions 4X and 5Z. While effort within 4X was related to the standardized catch value and effort experienced along the 4X–5Z boundary, most effort predictions across the boundary were also accurate. Accuracy of these cross-boundary isodars suggests that a high degree of movement across the boundary meets the IFD assumption of free movement and thus, effort on one side of the boundary is related to fishing success on the other side of the boundary. Fisheries management strategies should adopt a broad view that encompasses adjacent regulatory regions to understand where vessels may choose to fish when multiple regulatory regions are accessible. In fisheries where isodars describe effort distributions across a regulatory boundary, the relative abundance of the underlying fish population could be better indicated by effort distribution among regulatory regions than by catch rates. - OPEN ACCESS
- John Chételat,
- Joel P. Heath,
- Lucassie Arragutainaq,
- John Lameboy,
- Christine McClelland, and
- Raymond Mickpegak
Spatial patterns of bioaccumulated mercury were evaluated in coastal marine food webs of east Hudson Bay and east James Bay in the boreal subarctic of Canada. Two marine species, blue mussels (Mytilus edulis) and common eider ducks (Somateria mollissima) that consume mussels, were collected by a regional community-based monitoring network established in five communities. Stable isotope tracers (carbon, nitrogen, sulfur, and mercury) were measured to evaluate environmental drivers of mercury spatial patterns. Mercury concentrations of blue mussels and common eiders were twofold and fivefold higher, respectively, on the James Bay coast near the community of Chisasibi compared to sites in east Hudson Bay. Liver and muscle mercury concentrations of eiders from James Bay are among the highest values reported for the circumpolar subarctic and Arctic. Multiple lines of evidence (mercury spatial patterns, crustal elements in blue mussels, and mercury isotope values of common eiders) suggest elevated mercury in the coastal food web of east James Bay may be due to mercury loading from the La Grande River, which drains one of the largest hydroelectric developments in the world. These findings highlight the importance of further research on environmental processes linking large rivers to mercury bioaccumulation in northern coastal food webs. - OPEN ACCESSMarine protected areas (MPAs) are critical in safeguarding biodiversity and ecosystem functions under climate change. The long-term effectiveness of these static conservation measures will depend on how well they represent current and future ocean changes. Here, we use the Climate Risk Index for Biodiversity to assess the vulnerability representation of marine ecosystems within the Canadian marine conservation network (CMCN) under two divergent emissions scenarios. We found that MPAs best represent climate vulnerability in Atlantic Canada (85% representativity overall, and 93% in the Gulf of Saint Lawrence under low emissions), followed by the Pacific (78%) and Arctic (63%; lowest in the Eastern Arctic (41% under high emissions) regions). Notably, MPAs with lower climate vulnerability are proportionally overrepresented in the CMCN. Broad-scale geographic targets employed in the Scotian Shelf-Bay of Fundy network planning process achieve over 90% representativity of climate vulnerabilities, underscoring the importance of ensuring habitat representativity and geographic distribution in conservation planning to enhance climate resilience, even if not explicitly prioritized. Moving towards Canada’s target to protect 30% of its waters by 2030, prioritizing representativity and designation of MPAs in currently underrepresented climate-vulnerable regions may be crucial to enhancing the resilience of the CMCN amidst an ever-changing climate.
- OPEN ACCESS
- Emily M. Rubidge,
- Carrie K. Robb,
- Patrick L. Thompson,
- Chris McDougall,
- Karin M. Bodtker,
- Katie S.P. Gale,
- Stephen Ban,
- Kil Hltaanuwaay Tayler Brown,
- Vicki Sahanatien,
- Sachiko Ouchi,
- Sarah K. Friesen,
- Natalie C. Ban,
- Karen L. Hunter,
- Angelica Pena,
- Amber Holdsworth, and
- Rebecca Martone
Marine protected area (MPAs) networks can buffer marine ecosystems from the impacts of climate change by allowing species to redistribute as conditions change and by reducing other stressors. There are, however, few examples where climate change has been considered in MPA network design. In this paper, we assess how climate change considerations were integrated into the design of a newly released MPA network in the Northern Shelf Bioregion in British Columbia, Canada, and then evaluate the resulting network against projected physical and biogeochemical changes and biological responses. We found that representation, replication, and size and spacing recommendations integrated into the design phase were met in most cases. Furthermore, despite varying degrees of projected changes in temperature, dissolved oxygen, and aragonite saturation across the MPA network, suitable habitat for demersal fish species is projected to remain in the network despite some redistribution among sites. We also found that mid-depth MPAs are particularly important for persistence, as fish are projected to move deeper to avoid warming in shallower areas. Our results highlight that a representative MPA network with adequate replication, that incorporates areas of varying climate change trajectory, should buffer against the impacts of climate change. - OPEN ACCESS
- Dylan Hillis,
- Kristina M. Barclay,
- Erin Foster,
- Hannah M. Kobluk,
- Taylor Vollman,
- Anne K. Salomon,
- Chris T. Darimont, and
- Iain McKechnie
Shellfish have supported Indigenous lifeways on the Pacific Coast of North America for millennia. Despite the ubiquity of clamshells in archaeological sites, shell size measurements are rarely reported due to a lack of applicable basis for generating size estimates from fragmentary remains. We present a linear regression-based method for determining shell length from hinge and umbo measurements of littleneck (Leukoma staminea; n = 239), butter (Saxidomus gigantea; n = 274), and horse (Tresus nuttallii; n = 92) clams using both contemporary and archaeological shells collected from three regions in coastal British Columbia, Canada. We examine the accuracy of these size estimations, which indicate that 83%–97% of the variability in dorsal shell length is predicted by umbo thickness and hinge length. Hinge length generated higher R2 values yet exhibited greater intra- and inter-observer error. While the predicted dorsal length for each species differed by region, this size difference was smaller than intra- and inter-observer error, suggesting broad applicability for these simple measurements. We applied these formulae to a Tseshaht First Nation archaeological clamshell assemblage (n = 488) on western Vancouver Island spanning 3000 years and observed profiles that resemble contemporary legal size limits, which suggests the sustained use and maintenance of local shellfisheries. The accuracy of these regression models for determining shell length from fragments highlights the utility of this approach as a basis for assessing past shellfish management practices. - OPEN ACCESSShallow ponds can provide ideal conditions for production of greenhouse gases (GHGs) carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), and thus are important to include in global and regional GHG budgets. The Canadian Prairie Pothole Region contains millions of shallow natural ponds, and we investigated GHG dynamics in 145 ponds across the region. Ponds were consistently supersaturated with CH4, often supersaturated with CO2 (57% occurrence), and often undersaturated with N2O (65% occurrence). Spring measurements showed higher N2O saturation (p = 0.0037) than summer, while summer had higher CH4 (p < 0.001) and CO2 (p = 0.023) saturation than spring. Ponds exhibited large physicochemical variation, yet sulfate concentration and pH were strong predictors of dissolved CH4 and CO2, respectively. No predictor was identified for N2O. The link between sulfate and CH4 has important implications as dissolved CH4 in low sulfate (<178 mg L−1) systems was much more responsive to changes in temperature. This research fills an important knowledge gap about the GHG dynamics of prairie pothole ponds and the role of water chemistry for diffuse GHG release. Our work can also be used in ongoing efforts to describe ecosystem services (or disservices) assigned to ponds in this agriculture-dominated region.
- OPEN ACCESSClimate change presents challenges for marine area-based conservation measures through altered habitat and associated species range shifts. We conducted statistical downscaling for the eastern Canadian coastal domain over a range of global climate models, focusing on habitat suitability for Atlantic cod (Gadus morhua), a numerically depressed, but ecologically, economically, and culturally important species in this region. We examined cod egg survival, juvenile growth, and spawning habitat suitability, combining these into one habitat index to compare within-closure habitat suitability for multiple life stages through time. Areas of high cod egg habitat suitability are projected to shift northward and increase across all area closures studied, while optimum juvenile habitat shifts north and eastward, increasing in almost all closures except the south. Spawning habitat as a function of temperature and oxygen will likely decrease through time across the entire region, but less in northern locations. Overall cod habitat is forecasted to decline in the south of the region while increasing at central and northern latitudes, highlighting the importance of existing and developing northern shelf area closures. While warming will bring temperatures closer to optimum levels for cod in this cold-water system, oxygen limitation will become more prevalent in the south of the region and should be monitored as an important ocean health indicator.
- OPEN ACCESS
- Gretchen L. Lescord,
- Jennifer Simard,
- Thomas A. Johnston,
- Jacob Seguin,
- Claire E. Farrell,
- Nelson J. O'Driscoll, and
- Constance M. O'Connor
Water resource development can alter the movement and ecology of sturgeons. We studied total (THg) and methylmercury concentrations in whole blood sampled non-lethally from namew (Moose Cree L-dialect, lake sturgeon, Acipenser fulvescens), an endangered and culturally important subsistence fish. Namew were sampled from two tributaries within the Moose Cree Homeland: the Lower Mattagami River (an impacted system with four hydroelectric generating stations) and the North French River (a reference system that is free-flowing system with no development). Results indicated namew from the North French River had higher blood [THg] than those from the Mattagami River. Further modeling showed that trophic position was the primary driver of these differences, with North French namew having the highest nitrogen isotope ratios. Based on further isotope modeling, crayfish were major components of namew diet at all sites, while other prey items differed between sites. Specifically, namew with unobstructed access to the lower watershed had notably more enriched isotope values when compared to the freshwater benthic macroinvertebrates sampled, implying that other prey not captured herein may contribute to their diets and [THg]. Overall, we found differences in namew’s trophic ecology but no elevation in blood mercury levels at a site impacted by hydroelectric operations 60+ years post-impoundment. - OPEN ACCESSPathogen dispersal from infected aquaculture sites into the surrounding ocean poses risks of infection to wild and farmed species, but is difficult to predict. This study aimed to build a framework using an ocean circulation and a particle tracking model in conjunction with a dynamic infection model and a virus inactivation model to simulate the dispersal of the infectious salmon anemia virus (ISAV) from Atlantic salmon farms. Simulated particles were released from hypothetically infected farms and advected by modelled currents. Inactivation of viral cohorts by ambient ultraviolet radiation and natural microbial communities was simulated during advection. Simulations showed that ISAV concentration varied spatiotemporally with the progression of the outbreak, current speed and direction, tidal elevation amplitude, and environmental decay. Connectivity among aquaculture sites varied in relation to seaway distances, though simulations showed that connectivity can also be asymmetrical between farm sites. Sensitivity analyses showed that the dispersal of ISAV was moderately sensitive to uncertainty associated with the viral decay model, highlighting the importance of obtaining accurate estimates of inactivation rates of ISAV. This framework provides an approach to simulate waterborne viral transmission that considers the biology and epidemic features of significance for pathogens and the dynamic conditions of the ocean.
- OPEN ACCESSStrontium isotopes are used for provenience and mobility studies in archaeology, ecology, and forensic studies, and rely on accurate baseline maps that are used to compare and interpret human and animal strontium ratios. Here, we present a bioavailable 87Sr/86Sr map, also called an isoscape, for southern British Columbia derived from modern plant samples’ 87Sr/86Sr ratios. We sampled 67 medium root depth plants over a 900 km transect from the southern BC coast to inland BC to capture the natural 87Sr/86Sr ratios of plants along the four major geological belts in British Columbia. Non-parametric Kruskal–Wallis and pairwise Wilcox tests were used to examine whether the geological belts had statistically significant mean differences. It was found that the province could be effectively divided into east and west, with the Coastal–Intermontane and Omineca–Foreland regions having statistically different means from each other. 87Sr/86Sr ratios had statistically significant relationships with salt deposition, volcanic deposition, and mean age of the underlying lithology. Generally, 87Sr/86Sr ratios increased with distance from the coast as the atmospheric input of radiogenic strontium from marine-derived rainwater decreased and the input of radiogenic strontium isotopes from the underlying geology of the Rockies in the far east of the province increased.
- OPEN ACCESSThe American lobster fishery is the most economically significant commercial fishery in Atlantic Canada and takes place in waters that are warming due to climate change. Lobster are poikilotherms that tolerate a wide range of seasonal temperatures with an optimal range of 12–18 °C. Lobster in the Canadian Maritimes may be naturally acclimated to a wide range of temperatures and thus, could have a wide range of thermal tolerance that may be distinct across regions. The present study used non-invasive open-source tools to explore differences in thermal tolerance in real time between geographically separated lobster populations from around the Canadian Maritimes. Lobsters were acquired from six lobster fishing areas in the Canadian Maritimes and acclimated to either warm (15 °C) or cold (5 °C) water for two weeks before the onset of thermal trials. Geographic origin was not a significant predictor of estimated thermal maximum, while acclimation temperature was a significant predictor. These results suggest that thermal tolerance is more strongly linked to acclimation temperature than to geographic region.
- OPEN ACCESS
- OPEN ACCESSReintroduction is an important tool in the conservation and recovery of aquatic species at risk. However, components of the reintroduction process such as transportation have the potential to induce physiological stress and the extent to which preparatory techniques can mitigate this stress is poorly understood in small-bodied fishes. To address this concern, we studied the effect of transport on two fitness-related performance measures: maximum metabolic rate and thermal tolerance in redside dace (Clinostomus elongatus), an imperilled small-bodied stream fish native to eastern North America. Prior to transportation, we manipulated the body condition of redside dace over a 12-week period, by providing either low (1% of their total body mass) or high (2% of their total body mass) rations. The goal of this manipulation was to influence body condition, as higher body condition can enhance physiological performance. Subsequently, redside dace were transported for varying durations: 0, 3, and 6 h. Following transportation, we measured maximum metabolic rate (µmol/h) and thermal tolerance (CTmax, °C). Our results indicate that neither transport nor body condition had a significant effect on maximum metabolic rate or thermal tolerance (CTmax). These findings provide preliminary evidence that redside dace can physiologically tolerate transport based on the endpoints measured and this information may possibly be extended to other small-bodied fish, for which information is lacking.
- OPEN ACCESS
- Colin J. Whitfield,
- Emily Cavaliere,
- Helen M. Baulch,
- Robert G. Clark,
- Christopher Spence,
- Kevin R. Shook,
- Zhihua He,
- John W. Pomeroy, and
- Jared D. Wolfe
In many regions, a tradeoff exists between draining wetlands to support the expansion of agricultural land, and conserving wetlands to maintain their valuable ecosystem services. Decisions about wetland drainage are often made without identifying the impacts on the services these systems provide. We address this gap through a novel assessment of impacts on ecosystem services via wetland drainage in the Canadian prairie landscape. Draining pothole wetlands has large impacts, but sensitivity varies among the indicators considered. Loss of water storage increased the magnitude of median annual flows, but absolute increases with drainage were higher for larger, less frequent events. Total phosphorus exports increased in concert with streamflow. Our analysis suggested disproportionate riparian habitat losses with the first 30% of wetland area drained. Dabbling ducks and wetland-associated bird abundances respond strongly to the loss of small wetland ponds; abundances were predicted to decrease by half with the loss of only 20%–40% of wetland area. This approach to evaluating changes to key wetland ecosystem services in a large region where wetland drainage is ongoing can be used with an economic valuation of the drainage impacts, which should be weighed against the benefits associated with agricultural expansion. - OPEN ACCESSThe Nooksack Dace (Rhinichthys cataractae sp. cataractae) is a federally endangered riffle specialist endemic to the lower Fraser Valley of British Columbia, Canada, with historic population declines associated with riffle loss from stream dredging, channelization, and excessive sediment inputs. To assess the effectiveness of riffle restoration as a recovery strategy, gravel and cobble riffles were constructed in two replicate tributaries of the Nooksack River as a before-after-control-impact experiment, measuring dace abundance, substrate composition, and invertebrate biomass before and one year after restoration. Nooksack Dace density increased significantly in cobble (but not gravel) treatments relative to control riffles. Dace abundance was strongly associated with increased availability of interstitial refuges rather than substrate effects on invertebrate prey abundance, suggesting that interstitial space limits adult dace abundance. Young-of-the-year dace were not observed in one of the two restored streams despite riffle restoration, indicating increased dace density due to aggregation in higher-quality restored riffles. This recruitment limitation indicates persistence of a population bottleneck at an early life history stage that is not addressed by successful restoration of adult riffle habitat.
- OPEN ACCESSPrimary producers’ growth rates are ideal bioindicators of changing climate due to their sensitivity to environmental conditions. On the Central Coast of British Columbia, we assessed growth rates of Nereocystis luetkeana, a canopy-forming annual kelp, by assessing baseline variability in growth rates and their response to environmental conditions of over 600 individuals and across three sites (2016–2019). Optimal growth rates for blades and stipes (∼13–14 cm/day) occurred within a narrow range of local environmental conditions. Growth decreased at temperatures > 10 °C, below 1 µm/L nitrate concentration, and surface light availability reduced blade growth at low and high levels (daily light integral or DLI <20 and >40 mol/m2/day). Spatiotemporal variability in these environmental drivers co-occurred with differences in growth rates, suggesting that local conditions strongly influenced growth. In particular, temperature and nutrients were un-coupled seasonally in this region, with more variable responses in growth over the primary growing season (May to September). Overall, the sensitivity of the growth rates of this annual kelp to changing climatic conditions suggests that it is a useful bioindicator for management and marine planning efforts (e.g., restoration and aquaculture) across its species range and provides a feasible metric for monitoring.
- OPEN ACCESS
- Lee F.G. Gutowsky,
- Marshall Stuart,
- Amanda L. Caskenette,
- Lauren Jarvis,
- Doug A. Watkinson,
- Colin Kovachik,
- Douglas R. Leroux,
- Nicholas B. Kludt,
- Mark A. Pegg, and
- Eva C. Enders
In temperate rivers, where environmental conditions vary seasonally, many fishes migrate among summer, spawning, and winter habitats. Dams disrupt these migrations, limiting access to habitat and potentially affecting populations. Bigmouth Buffalo (Ictiobus cyprinellus) is a species of fish with at-risk populations in central Canada. The impact of dams on the extent of Bigmouth Buffalo migration and the overlap between summer and winter home ranges is unknown. Here, we assessed the migratory history of 80 Bigmouth Buffalo tagged with acoustic transmitters in the Red River (USA and Canada), a large binational waterway regulated by semi-passable dams. We sought to understand when and why Bigmouth Buffalo migrate, and how river use varies seasonally. Following more than 6 years of data collection, we found that the degree and probability of overlap between winter and summer home ranges varied by river section between barriers. Importantly, overlap was lowest in the longest continuous river section where well-defined migratory behaviours were observed. The results of this study reveal previously unknown details about Bigmouth Buffalo migration, demonstrate the consequences of river fragmentation on geographic space use, and highlight the importance of river connectivity to fish migration. - OPEN ACCESSBecause of Canada’s large size, it is impractical to obtain a comprehensive perspective on biotic change through morphological approaches. DNA metabarcoding offers a potential path, but its application requires access to a well-parameterized DNA barcode reference library. This study presents the current state of DNA barcode coverage for Canadian animals, highlighting progress, identifying gaps, and providing recommendations for future research. Our analysis indicates that many of the known species (100 000 terrestrial and 6000 marine) in the Canadian fauna possess DNA barcode coverage, but there are important gaps geographically and taxonomically. We summarize DNA barcode coverage for the species in freshwater, marine, and terrestrial environments by ecoregion, finding that 95.6% of the 2.3 million Canadian barcode records derive from terrestrial ecosystems. Although the density of barcode records per 100 km² is 13x higher for terrestrial than aquatic environments (22.4 vs. 1.7), coverage for 58% of marine species is available (54% for annelids, 52% for arthropods, 88% for chordates, 39% for echinoderms, and 46% for molluscs). By revealing data-deficient areas and taxonomic groups, this study offers a roadmap for expanding the DNA barcode library for the Canadian fauna as an essential foundation for the scalable biosurveillance initiatives that inform biodiversity conservation efforts.
- OPEN ACCESS
- Steven J. Cooke,
- Andy J. Danylchuk,
- Joel Zhang,
- Vivian M. Nguyen,
- Len M. Hunt,
- Robert Arlinghaus,
- Kathryn J. Fiorella,
- Hing Man Chan, and
- Tony L. Goldberg
Recreational fisheries involve an intimate connection between people, individual fish, and the environment. Recreational fishers and their health crucially depend on healthy fish and ecosystems. Similarly, fish and ecosystems can be impacted by the activities of people including recreational fishers. Thus, amplified by the global interest in recreational fishing, we posit that recreational fishing is particularly suited as an empirical system to explore a One Health perspective, with a goal of creating pathways to better manage such socio-ecological systems for the benefit of people, fish, and the environment. Although zoonoses are uncommon in fishes, fish can carry pathogens, biotoxins, or contaminants that are harmful to people. When captured and released, fish can experience stress and injuries that may promote pathogen development. Similarly, when humans contribute to environmental degradation, not only are fish impacted but so are the humans that depend on them for nutrition, livelihoods, culture, and well-being. Failure to embrace the One Health perspective for recreational fisheries has the potential to negatively impact the health of fish, fisheries, people, society, and the aquatic environment—especially important since these complex social–ecological systems are undergoing rapid change. - OPEN ACCESSClimate change threatens marine ecosystems with known effects on marine life, including changes in metabolic rates, survival, and community structure. Based on a structured literature review, we developed a conceptual “pathways of effects” model that summarizes how three stressors associated with climate change (warming, acidification, and storms) affect functional species groups on the West Coast of Vancouver Island, Canada. We identified 155 distinct pathways from the three stressors through 12 categories of biological effects ranging from changes in the biochemistry of individual organisms to effects on community composition. Most species groups were affected by several climate stressors and via many pathways, although individual studies generally considered only a small fraction of relevant pathways. These effects depended on the species of interest and geographical location, highlighting the importance of local research. Climate change stressors exert complex, sometimes contradictory effects that vary across ecological scales. For example, some stressors that adversely affected a species in laboratory studies appeared beneficial in community-scale field studies. Pathways of effects models are helpful tools to summarize scientific studies across ecological scales. Compiling them in standardized databases would allow researchers and practitioners to search across species and regions to better support ecosystem-based management and environmental impact assessment.
- OPEN ACCESS
- Amanda L. Loder,
- Adam Gillespie,
- Omid Haeri Ardakani,
- Cecilia Cordero Oviedo, and
- Sarah A. Finkelstein
Reported rates of soil organic carbon (SOC) accumulation in wetlands are markedly higher over recent versus longer timescales, caused by SOC losses through decomposition, paleoenvironmental changes, and recent increases in sedimentation or biomass production. Explaining changes in SOC sequestration rates and determining the time horizon over which high rates are sustained are both critical for accurately measuring the potential for wetland conservation as a natural climate solution. Here, we present analyses on a 4-m core from a riverine-influenced marsh in Big Creek watershed, southern Ontario, to track changes in SOC accumulation regimes. Since wetland initiation ∼5700 years ago, mean long-term (pre-industrial) rates of SOC accumulation were 24 g C m−2 year−1, and recent rates up to four times higher. We demonstrate that elevated recent rates of SOC accumulation are largely explained by more labile carbon in surficial soils, and are sustained for less than a century before transitioning to slower burial rates of predominantly recalcitrant organic matter. However, there are exceptions to this trend, such as when labile SOC was buried intermittently during Holocene Lake Erie highstands. Our research underscores the importance of organic matter type and hydroclimatic context in predicting long-term potential for marsh soils to stabilize atmospheric carbon. - OPEN ACCESSWalleye/ogaa (Sander vitreus (Mitchill)) (hereafter, walleye; ogaa = Ojibwe translation) populations have historically supported important multi-use, harvest-oriented fisheries. Despite intensive management, walleye populations have declined in the midwestern United States raising concerns about the sustainability of the species. Numerous factors have been implicated in walleye population declines, including climate change, habitat loss, invasive species, species-interactions, production overharvest (i.e., harvest consistently exceeding annual production), and changing angler behaviors. These factors have negatively influenced natural recruitment and contributed to depensatory recruitment dynamics. I provide a review and perspective suggesting that the current trajectory of walleye populations is at or nearing an ecological tipping point. Although fish populations are often considered compensatory (i.e., negatively density-dependent), current walleye populations appear prone to depensation (i.e., positive density dependence). My review and perspective suggest that a compensatory management perspective for walleye is misaligned. A change in management towards a depensatory resource focus using ecosystem-based fisheries management and the recognition of walleye fisheries as social–ecological systems is needed for conservation. If compensatory management ensues, walleye persistence will likely be further threatened because many drivers of change are outside of managerial control, and those commonly used within managerial control have seemingly been ineffective for sustaining or rehabilitating naturally reproducing walleye populations.
- OPEN ACCESS
- Graham Epstein,
- Susanna D. Fuller,
- Sophia C. Johannessen,
- Emily M. Rubidge,
- Melissa Turner, and
- Julia K. Baum
Marine conserved areas (MCAs) can provide a range of ecological and socio-economic benefits, including climate change mitigation from the protection and enhancement of natural carbon storage. Canada's MCA network is expanding to encompass 30% of its Exclusive Economic Zone by 2030. At present, the network aims to integrate climate change mitigation by protecting coastal vegetated blue carbon ecosystems (saltmarsh, seagrass, kelp). Here, we argue that incorporating unvegetated seabed sediments could bring similar benefits. Seabed sediments can store and/or accumulate high densities of organic carbon, and due to their large spatial extent, contain carbon stores orders of magnitude larger than coastal vegetated habitats. We estimate that currently designated MCAs encompass only 10.8% of Canada's seabed sediment organic carbon stocks on the continental margin, and only 13.4% of areas with high carbon densities. Proposed MCAs would cover an additional 8.8% and 6.1% of total stocks and high carbon areas, respectively. We identify an additional set of high-priority seabed areas for future research and potential protection, ranking their importance based on carbon stocks, proxies for lability, and ecological/biological significance. The incorporation of seabed sediments into MCA networks could support climate change mitigation by preventing future releases of stored carbon. - OPEN ACCESS
- Wesley J. Glisson,
- Michelle Nault,
- Chris Jurek,
- Eric Fischer,
- Keegan Lund,
- Kylie Bloodsworth Cattoor,
- April Londo,
- Nicole Kovar,
- Emelia Hauck-Jacobs,
- Rod Egdell,
- Steve McComas,
- Eric Fieldseth, and
- Daniel J. Larkin
Nitellopsis obtusa (starry stonewort) is an invasive macroalga subject to substantial control efforts in the Midwestern United States; however, there has not been systematic evaluation of treatment effectiveness. We synthesized management approaches and outcomes using monitoring performed over a decade-long period across 38 lakes in Indiana, Wisconsin, and Minnesota. Copper-based algaecide treatments were the primary means of control, followed by physical removal methods or combination treatments. Control efforts and associated monitoring data varied by spatial scale, as did surveyors’ N. obtusa sampling methods. At the largest (whole-lake) scale, we found no evidence that algaecide treatments were slowing expansion or reducing abundance of N. obtusa within infested lakes. At smaller, within-lake scales, we found that algaecide and physical treatments could reduce N. obtusa frequency and biomass, but outcomes were highly variable. At the smallest scales, hand pulling was an effective containment strategy for small, localized populations that were detected early. These results highlight the need to set realistic goals for N. obtusa control and develop improved management techniques. There were also critical gaps in monitoring that limited our ability to evaluate treatment effectiveness. In particular, increased monitoring of unmanaged reference lakes and untreated areas within managed lakes is needed. - OPEN ACCESS
- Breanna Bishop,
- Emmelie Paquette,
- Natalie Carter,
- Gita Ljubicic,
- Eric C.J. Oliver, and
- Claudio Aporta
Environmental indicators are naturally occurring variables, conditions, and events that are used to assess and monitor environmental conditions and change. Inuit throughout Inuit Nunaat (Inuit circumpolar homelands) observe and experience environmental indicators as they travel year-round for harvesting and other cultural practices. Inuit draw on their observations of current conditions and their knowledge of weather, water, ice, and climate (WWIC) indicators, when seeking to predict and understand conditions that impact safe travel. This scoping review documents the types and diversity of WWIC indicators articulated in peer-reviewed and grey literature as being used by Inuit in Canada, Alaska, and Greenland to assess travel safety. Two reviewers independently screened 512 studies using pre-determined eligibility criteria and 123 studies were included for review. A total of 163 unique WWIC indicators were used across 85 communities in Canada, Alaska, and Greenland. Indicators reflect a broad range of ways that Inuit experience their environment, through sight, feel, and sound. Indicators can be considered as causal, conditional, or predictive (or a combination thereof), where knowledge of the interactions among various indicators is especially important to support safe travel. Identified gaps and future research directions included assessing key indicators to better target development of locally relevant research and information services. - OPEN ACCESS
- Stephanie Graves,
- Shao-Min Chen,
- Rachel McNamee,
- Tazi H. Rodrigues,
- Brian Hayden,
- Chelsea M. Rochman,
- Jennifer F. Provencher,
- Michael D. Rennie,
- Daniel Layton-Matthews,
- Matthew Leybourne,
- Owen A. Sherwood, and
- Diane M. Orihel
Microplastics degrade slowly over time, leaching carbon (C) that could be subsequently incorporated into aquatic food webs. Current estimates of microplastic degradation vary, and little is known about microplastic-derived C fate under natural environmental conditions. To investigate whether microplastics leach C that is subsequently incorporated into aquatic food webs, we added isotopically enriched microplastics to Lake 378 at the Experimental Lakes Area in Ontario, Canada. In an ∼1100 L limnocorral (in situ open-bottom enclosure), we added 99% 13C-labelled polystyrene (8–216 µm in longest dimension) at a nominal concentration of 3268 particles/L. A second limnocorral without microplastics served as a negative control. Monthly measurements of δ13C-DIC and δ13C-DOC in filtered water revealed no detectable leaching of 13C from the plastic. Compound-specific isotope analysis of δ13C in amino acids of bulk plankton and periphyton revealed a slight (0.5‰) enrichment in 13C, within the range of natural variability for these organisms. Under the natural conditions of temperate oligotrophic lakes, degradation of microplastics is likely a very slow process that was not possible to detect in this 4-month experiment. Future studies should focus on assessing degradation of microplastics under realistic field scenarios to improve estimates of degradation pathways and associated time scales. - OPEN ACCESS
- Kara L. Webster,
- Maria Strack,
- Nicole Balliston,
- Marissa A. Davies,
- E. Kathryn Hettinga,
- Miranda Hunter,
- Kimberly Kleinke,
- Megan Schmidt,
- Carlos Barreto,
- Melanie Bird,
- Kristen Blann,
- Kelly Bona,
- Allison Cassidy,
- John Connolly,
- Scott J. Davidson,
- Lee Fedorchuk,
- Michelle Garneau,
- Lorna Harris,
- Hongxing He,
- Sarah Howie,
- Adam Kirkwood,
- Nicholas Pontone,
- Karen Richardson,
- Nicole Sanderson,
- Gilles Seutin,
- Bin Xu, and
- Xiangbo Yin
Knowledge and data on the current function, future threats, and benefits of peatlands in Canada are required to support evidence-based decision-making to ensure they continue to provide critical ecosystem services. This is particularly relevant for Canada, given the large expanse of relatively intact peatland area. There is a need, not only to standardize protocols, but also to prioritize types of information and knowledge that can best meet conservation and management goals. This was the challenge posed to the participants of the Global Peatlands Initiative workshop in June 2023 in Quebec City, Quebec, Canada. Participants were composed of researchers using primarily Western science approaches that use peatland data for carbon accounting, policy or sustainable land use, reclamation/restoration, conservation, wildlife, and water resources applications. For seven peatland data categories (hydrometeorological and environmental sensing; peat coring and depth; greenhouse gas monitoring; biodiversity; vegetation, woody debris, and litter; Traditional Knowledge; water quality), three priority measurements were identified and recommendations for their collection were discussed. The key recommendations from the workshop were to (1) create standardized, yet flexible protocols; (2) coordinate field data collection where possible; (3) weave more Traditional Knowledge into understanding of peatlands; (4) create an atlas of existing peatland information; (5) scope opportunities to create a network of peatland “super sites”. - OPEN ACCESS
- Mael Le Corre,
- Felipe Dargent,
- Vaughan Grimes,
- Joshua Wright,
- Steeve D. Côté,
- Megan S. Reich,
- Jean-Noël Candau,
- Marrissa Miller,
- Brent Holmes,
- Clement P. Bataille, and
- Kate Britton
Bioavailable strontium isotope ratios (87Sr/86Sr) distribution across the landscape mainly follow the underlying lithology, making 87Sr/86Sr baseline maps (isoscapes) powerful tools for provenance studies. 87Sr/86Sr has already been used in Eastern Canada (EC) to track food and human remains origins, or to reconstruct animal mobility. While bioavailable 87Sr/86Sr isoscapes for EC can be extrapolated from global datasets using random forest modelling (RF), no regionally calibrated isoscape exists. Here, we produce a regionally calibrated bioavailable 87Sr/86Sr isoscape by analysing plants collected at 136 sites across EC, incorporating updated geological variables and applying a novel ensemble machine learning (EML) framework. We generated and compared isoscapes generated by the traditional RF and the EML approaches. Adding local bioavailable 87Sr/86Sr to a global dataset significantly improved the model prediction with a drastic increase of predicted 87Sr/86Sr and increased spatial uncertainty in the northern Canadian craton. EML produced similar 87Sr/86Sr predictions but with tighter spatial uncertainty distribution. Regionally calibrated RF and EML isoscapes significantly outperformed the global bioavailable RF isoscape, confirming the requirement for collecting local data in data-poor regions. This isoscape provides a baseline in EC to monitor and manage the movements and provenance of agricultural products, natural resources, endangered/harmful migratory species, and archaeological human remains and artifacts.